Menu Close

1-decompose-inside-C-x-and-R-x-F-1-x-2-x-1-2-2-calculate-0-dx-x-2-x-1-2-




Question Number 82433 by mathmax by abdo last updated on 21/Feb/20
1)decompose inside C(x)and R(x) F=(1/((x^2 +x+1)^2 ))  2)calculate ∫_0 ^∞   (dx/((x^2 +x+1)^2 ))
1)decomposeinsideC(x)andR(x)F=1(x2+x+1)22)calculate0dx(x2+x+1)2
Commented by mathmax by abdo last updated on 24/Feb/20
x^2  +x+1 =0→Δ =1−4=−3 ⇒z_1 =((−1+i(√3))/2) =e^(i((2π)/3))   z_2 =e^(−((i2π)/3))  ⇒F =(1/((x−e^((i2π)/3) )^2 (x−e^(−((i2π)/3)) )^2 )) =(a/(x−e^((i2π)/3) ))+(b/((x−e^((i2π)/3) )^2 ))  +(c/((x−e^(−i((2π)/3)) ))) +(d/((x−e^(−i((2π)/3)) )^2 ))  b =(1/((2isin(((2π)/3)))^2 )) =−(1/(4i(((√3)/2))^2 )) =−(1/(3i))  d=(1/((2isin(((2π)/3)))^2 ))=−(1/(3i)) ⇒F(x)=(a/((x−e^((i2π)/3) )))−(1/(3i(x−e^((i2π)/3) )^2 ))  +(c/(x−e^(−((i2π)/3)) )) −(1/(3i(x−e^(−((i2π)/3)) )^2 ))  lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a  F(0)=1 =−ae^(−((i2π)/3)) −(1/(3i))e^(−((i4π)/3)) +ae^((i2π)/3)  −(1/(3i))e^((i4π)/3)   =2ia sin(((2π)/3))−(1/(3i))(2cos(((4π)/3)))=2ia ×((√3)/2)−(2/(3i))(−(1/2))  =ai(√3)+(1/(3i)) =ai(√3)−(i/3)=1 ⇒ai(√3)=1+(i/3) ⇒  a=(1/(i(√3)))(1+(i/3))=(1/(i(√3)))+(1/(3(√3))) =(1/(3(√3)))−(i/( (√3))) and c=−(1/(3(√3)))+(i/( (√3))) ⇒  F(x)=((1/(3(√3)))−(i/( (√3))))×(1/(x−e^((i2π)/3) )) +(i/(3(x−e^((i2π)/3) )^2 ))−((1/(3(√3)))−(i/( (√3))))×(1/(x−e^(−((i2π)/3)) ))  +(i/(3(x−e^(−i((2π)/3)) )^2 ))
x2+x+1=0Δ=14=3z1=1+i32=ei2π3z2=ei2π3F=1(xei2π3)2(xei2π3)2=axei2π3+b(xei2π3)2+c(xei2π3)+d(xei2π3)2b=1(2isin(2π3))2=14i(32)2=13id=1(2isin(2π3))2=13iF(x)=a(xei2π3)13i(xei2π3)2+cxei2π313i(xei2π3)2limx+xF(x)=0=a+cc=aF(0)=1=aei2π313iei4π3+aei2π313iei4π3=2iasin(2π3)13i(2cos(4π3))=2ia×3223i(12)=ai3+13i=ai3i3=1ai3=1+i3a=1i3(1+i3)=1i3+133=133i3andc=133+i3F(x)=(133i3)×1xei2π3+i3(xei2π3)2(133i3)×1xei2π3+i3(xei2π3)2

Leave a Reply

Your email address will not be published. Required fields are marked *