Menu Close

1-decompose-inside-C-x-p-x-x-2n-2-cos-x-n-1-2-decopose-p-x-inside-R-x-




Question Number 36904 by prof Abdo imad last updated on 07/Jun/18
1)decompose inside C[x]  p(x)=x^(2n)  −2(cosα)x^n  +1  2) decopose p(x)inside R[x]
1)decomposeinsideC[x]p(x)=x2n2(cosα)xn+12)decoposep(x)insideR[x]
Commented by math khazana by abdo last updated on 11/Jun/18
1) let put  x^n  =t ⇒p(x)=t^2  −2cos(α)t +1  Δ^′  =cos^2 −1 =(isinα)^2  ⇒t_1 = e^(iα)  and t_2 =e^(−iα)   p(x)=(t−e^(iα) )(t−e^(−iα) ) = (x^n  −e^(iα) )(x^n −e^(−iα) )roots  of z^n  −e^(iα)    =0 ⇒ z^n  =e^(iα)  ⇒ r=1 and  nθ = α +2kπ ⇒ θ =((α +2kπ)/n)  k∈[[0,n−1]]so  the roots are z_k =e^(i ((α+2kπ)/n))   roots of   x^n  −e^(−iα) =0 ⇒x^n  =e^(−iα)  ⇒r=1  and nθ =−α +2kπ ⇒ θ_k =((−α +2kπ)/n) ⇒  the roots are  λ_k  = e^(i((−α+2kπ)/n))   and k∈[[0,n−1]]  ⇒p(x) =Π_(k=0) ^(n−1)  (x−z_k )Π_(k=0) ^(n−1) (x−λ_k )  =Π_(k=0) ^(n−1) (x −e^(i((α+2kπ)/n)) )(x− e^(i((−α +2kπ)/n)) ) with  k∈[[0,n−1]].
1)letputxn=tp(x)=t22cos(α)t+1Δ=cos21=(isinα)2t1=eiαandt2=eiαp(x)=(teiα)(teiα)=(xneiα)(xneiα)rootsofzneiα=0zn=eiαr=1andnθ=α+2kπθ=α+2kπnk[[0,n1]]sotherootsarezk=eiα+2kπnrootsofxneiα=0xn=eiαr=1andnθ=α+2kπθk=α+2kπntherootsareλk=eiα+2kπnandk[[0,n1]]p(x)=k=0n1(xzk)k=0n1(xλk)=k=0n1(xeiα+2kπn)(xeiα+2kπn)withk[[0,n1]].

Leave a Reply

Your email address will not be published. Required fields are marked *