Menu Close

1-decompose-inside-C-x-the-fraction-F-x-3-4-x-4-2-find-dx-x-z-with-z-from-C-3-find-the-value-of-3dx-4-x-4-




Question Number 39967 by math khazana by abdo last updated on 14/Jul/18
1) decompose inside C(x) the fraction  F(x)= (3/(4+x^4 ))  2) find ∫_(−∞) ^(+∞)    (dx/(x−z))  with z from C  3) find the value of  ∫_(−∞) ^(+∞)    ((3dx)/(4+x^4 )) .
1)decomposeinsideC(x)thefractionF(x)=34+x42)find+dxxzwithzfromC3)findthevalueof+3dx4+x4.
Commented by math khazana by abdo last updated on 15/Jul/18
3) for Q 3) i have used the  formulae  ∫_0 ^∞    (t^(a−1) /(1+t)) dt = (π/(sin(πa))) if 0<a<1 .
3)forQ3)ihaveusedtheformulae0ta11+tdt=πsin(πa)if0<a<1.
Commented by abdo mathsup 649 cc last updated on 15/Jul/18
1) we have F(x)= (3/(((√2))^4  +x^4 )) =(3/(((2)^2  +(x^2 )^2 ))  = (3/((x^2  +2)^2  −4x^2 )) = (3/((x^2  −2x +2)(x^2  +2x +2)))  roots of x^2  −2x +2   Δ^′  = 1−2 =−1=(i)^2  ⇒x_0 = 1 +i =(1/( (√2))) e^((iπ)/4)   x_1 =1−i =(1/( (√2))) e^(−((iπ)/4))   roots of  x^2  +2x+2   Δ^′  =1−2=−1 ⇒ x_2 = −1 +i =(1/( (√2))) e^((i3π)/4)   x_3 = −1−i = (1/( (√2))) e^(−((i3π)/4))   ⇒  F(x) =  (3/((x−x_0 )(x−x_1 )(x−x_2 )(x−x_3 )))  = (3/((x−(1/( (√2)))e^((iπ)/4) )(x−(1/( (√2)))e^(−((iπ)/4)) )(x−(1/( (√2)))e^((i3π)/4) )(x−(1/( (√2))) e^(−((i3π)/4)) )))  = (a/(x−(1/( (√2)))e^((iπ)/4) )) + (b/(x−(1/( (√2)))e^(−((iπ)/4)) )) + (c/(x−(1/( (√2)))e^((i3π)/4) )) + (d/(x−(1/( (√2)))e^(−((i3π)/4)) ))  we have λ_i = (3/(4x_i ^3 )) ⇒  a = (3/(4 x_0 ^3 )) = (3/(4 .(1/(2(√2))) e^((i3π)/4) )) =3 ((√2)/2)  e^(−((i3π)/4))   b = (3/(4x_1 ^3 ))  = (3/(4 .(1/(2(√2)))e^(−((i3π)/4)) )) =((3(√2))/2) e^((i3π)/4)   c   = (3/(4 x_2 ^3 )) = (3/(4 .(1/(2(√2)))e^(i((9π)/4)) )) = ((3(√2))/2) e^(−((i9π)/4))  =((3(√2))/2) e^(−((iπ)/4))   d =  (3/(4 x_3 ^3 )) = (3/(4 .(1/(2(√2)))e^(−((i9π)/4)) ))  = ((3(√2))/2) e^((i9π)/4)   =((3(√2))/2) e^((iπ)/4)
1)wehaveF(x)=3(2)4+x4=3((2)2+(x2)2=3(x2+2)24x2=3(x22x+2)(x2+2x+2)rootsofx22x+2Δ=12=1=(i)2x0=1+i=12eiπ4x1=1i=12eiπ4rootsofx2+2x+2Δ=12=1x2=1+i=12ei3π4x3=1i=12ei3π4F(x)=3(xx0)(xx1)(xx2)(xx3)=3(x12eiπ4)(x12eiπ4)(x12ei3π4)(x12ei3π4)=ax12eiπ4+bx12eiπ4+cx12ei3π4+dx12ei3π4wehaveλi=34xi3a=34x03=34.122ei3π4=322ei3π4b=34x13=34.122ei3π4=322ei3π4c=34x23=34.122ei9π4=322ei9π4=322eiπ4d=34x33=34.122ei9π4=322ei9π4=322eiπ4
Commented by abdo mathsup 649 cc last updated on 15/Jul/18
2) let put  A(ξ) = ∫_(−ξ) ^(+ξ)     (dx/(x−z))  we have   lim_(ξ→+∞)  A(ξ)= ∫_(−∞) ^(+∞)   (dx/(x−z)) let z = α +iβ  A(ξ) = ∫_(−ξ) ^ξ    (dx/(x−α −iβ))  = ∫_(−ξ) ^(+ξ)      ((x−α +iβ)/((x−α)^(2 )  +β^2 )) dx  = ∫_(−ξ) ^ξ     ((x−α)/((x−α)^2  +β^2 ))dx  +iβ ∫_(−ξ) ^ξ    (dx/((x−α)^2  +β^2 )) but  ∫_(−ξ) ^ξ    ((x−α)/((x−α)^2  +β^2 )) dx = (1/2)[ln∣(x−α)^2  +β^2 ∣]_(−ξ) ^(+ξ)   = (1/2)ln((((ξ−α)^2  +β^2 )/((ξ+α)^2  +β^2 )))→0 when ξ→+∞  changement x−α = βt give  ∫_(−ξ) ^ξ      (dx/((x−α)^2  +β^2 )) = ∫_((−ξ−α)/β) ^((ξ−α)/β)     (1/(β^2 (1+t^2 ))) β dt  = (1/β) [ arctant]_((−ξ−α)/β) ^((ξ−α)/β)  =(1/β) { arctan(((ξ−α)/β))+arctan(((ξ+α)/β))}  ⇒iβ ∫_(−ξ) ^ξ    (dx/((x−α)^2  +β^2 )) =i{ arctan(((ξ−α)/β)) +arctan(((ξ+α)/β))}  so if β>0  arctan(((ξ −α)/β)) +arctan(((ξ +α)/β))_(ξ→+∞) →π  if β<0  arctan(((ξ−α)/β)) +arctan(((ξ +α)/β))→−π  so A(ξ) →iπ if β>0 and A(ξ)→−iπ if β<0  finally   ∫_(−∞) ^(+∞)    (dx/(x−z)) =iπ if Im(z)>0 and  ∫_(−∞) ^(+∞)    (dx/(x−z)) =−iπ if Im(z)<0 .
2)letputA(ξ)=ξ+ξdxxzwehavelimξ+A(ξ)=+dxxzletz=α+iβA(ξ)=ξξdxxαiβ=ξ+ξxα+iβ(xα)2+β2dx=ξξxα(xα)2+β2dx+iβξξdx(xα)2+β2butξξxα(xα)2+β2dx=12[ln(xα)2+β2]ξ+ξ=12ln((ξα)2+β2(ξ+α)2+β2)0whenξ+changementxα=βtgiveξξdx(xα)2+β2=ξαβξαβ1β2(1+t2)βdt=1β[arctant]ξαβξαβ=1β{arctan(ξαβ)+arctan(ξ+αβ)}iβξξdx(xα)2+β2=i{arctan(ξαβ)+arctan(ξ+αβ)}soifβ>0arctan(ξαβ)+arctan(ξ+αβ)ξ+πifβ<0arctan(ξαβ)+arctan(ξ+αβ)πsoA(ξ)iπifβ>0andA(ξ)iπifβ<0finally+dxxz=iπifIm(z)>0and+dxxz=iπifIm(z)<0.
Commented by math khazana by abdo last updated on 15/Jul/18
3) let I = ∫_(−∞) ^(+∞)   ((3dx)/(4+x^4 ))  I = (6/4) ∫_0 ^∞     (dx/(1+((x/( (√2))))^4 )) =(3/2)∫_0 ^∞    (dx/(1+((x/( (√2))))^4 ))  changement  ((x/( (√2))))^4  =t give x=(√2) t^(1/4)   ∫_0 ^∞    (dx/(1+((x/( (√2))))^4 )) =(1/4) ∫_0 ^∞     (((√2) )/(1+t)) t^((1/4)−1) dt  =((√2)/4) ∫_0 ^∞    (t^((1/4)−1) /(1+t)) dt = ((√2)/4) (π/(sin((π/4)))) =((π(√2))/(4 .((√2)/2)))  = (π/2) ⇒ I = (3/2) (π/2) =((3π)/4)
3)letI=+3dx4+x4I=640dx1+(x2)4=320dx1+(x2)4changement(x2)4=tgivex=2t140dx1+(x2)4=14021+tt141dt=240t1411+tdt=24πsin(π4)=π24.22=π2I=32π2=3π4

Leave a Reply

Your email address will not be published. Required fields are marked *