Question Number 39967 by math khazana by abdo last updated on 14/Jul/18

Commented by math khazana by abdo last updated on 15/Jul/18

Commented by abdo mathsup 649 cc last updated on 15/Jul/18

Commented by abdo mathsup 649 cc last updated on 15/Jul/18
![2) let put A(ξ) = ∫_(−ξ) ^(+ξ) (dx/(x−z)) we have lim_(ξ→+∞) A(ξ)= ∫_(−∞) ^(+∞) (dx/(x−z)) let z = α +iβ A(ξ) = ∫_(−ξ) ^ξ (dx/(x−α −iβ)) = ∫_(−ξ) ^(+ξ) ((x−α +iβ)/((x−α)^(2 ) +β^2 )) dx = ∫_(−ξ) ^ξ ((x−α)/((x−α)^2 +β^2 ))dx +iβ ∫_(−ξ) ^ξ (dx/((x−α)^2 +β^2 )) but ∫_(−ξ) ^ξ ((x−α)/((x−α)^2 +β^2 )) dx = (1/2)[ln∣(x−α)^2 +β^2 ∣]_(−ξ) ^(+ξ) = (1/2)ln((((ξ−α)^2 +β^2 )/((ξ+α)^2 +β^2 )))→0 when ξ→+∞ changement x−α = βt give ∫_(−ξ) ^ξ (dx/((x−α)^2 +β^2 )) = ∫_((−ξ−α)/β) ^((ξ−α)/β) (1/(β^2 (1+t^2 ))) β dt = (1/β) [ arctant]_((−ξ−α)/β) ^((ξ−α)/β) =(1/β) { arctan(((ξ−α)/β))+arctan(((ξ+α)/β))} ⇒iβ ∫_(−ξ) ^ξ (dx/((x−α)^2 +β^2 )) =i{ arctan(((ξ−α)/β)) +arctan(((ξ+α)/β))} so if β>0 arctan(((ξ −α)/β)) +arctan(((ξ +α)/β))_(ξ→+∞) →π if β<0 arctan(((ξ−α)/β)) +arctan(((ξ +α)/β))→−π so A(ξ) →iπ if β>0 and A(ξ)→−iπ if β<0 finally ∫_(−∞) ^(+∞) (dx/(x−z)) =iπ if Im(z)>0 and ∫_(−∞) ^(+∞) (dx/(x−z)) =−iπ if Im(z)<0 .](https://www.tinkutara.com/question/Q40000.png)
Commented by math khazana by abdo last updated on 15/Jul/18
