Menu Close

1-decompose-the-fraction-F-x-1-x-3-x-1-3-2-find-the-sum-n-1-1-n-n-3-n-1-3-




Question Number 104891 by mathmax by abdo last updated on 24/Jul/20
1) decompose the fraction F(x) =(1/(x^3 (x+1)^3 ))  2) find the sum Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^3 ))
1)decomposethefractionF(x)=1x3(x+1)32)findthesumn=1(1)nn3(n+1)3
Answered by mathmax by abdo last updated on 26/Jul/20
1) F(x) =(1/(x^3 (x+1)^3 )) ⇒F(x) =((1/(x(3+1))))^3  =((1/x)−(1/(x+1)))^3   =(1/x^3 )−(3/(x^2 (x+1))) +(3/(x(x+1)^2 ))−(1/((x+1)^3 ))  =(1/x^3 ) −(3/x)((1/x)−(1/(x+1))) +(3/(x+1))((1/x)−(1/(x+1)))−(1/((x+1)^3 ))  =(1/x^3 )−(3/x^2 ) +(3/(x(x+1))) +(3/(x(x+1)))−(3/((x+1)^2 ))−(1/((x+1)^3 ))  =(1/x^3 )−(3/x^2 ) +6((1/x)−(1/(x+1)))−(3/((x+1)^2 ))−(1/((x+1)^3 ))  ⇒F(x) =(6/x)−(3/x^2 )+(1/x^3 )−(6/(x+1))−(3/((x+1)^2 ))−(1/((x+1)^3 ))
1)F(x)=1x3(x+1)3F(x)=(1x(3+1))3=(1x1x+1)3=1x33x2(x+1)+3x(x+1)21(x+1)3=1x33x(1x1x+1)+3x+1(1x1x+1)1(x+1)3=1x33x2+3x(x+1)+3x(x+1)3(x+1)21(x+1)3=1x33x2+6(1x1x+1)3(x+1)21(x+1)3F(x)=6x3x2+1x36x+13(x+1)21(x+1)3
Commented by mathmax by abdo last updated on 26/Jul/20
2) let S =Σ_(n=1) ^∞  (((−1)^n )/(n^3 (n+1)^3 )) ⇒S =lim_(n→+∞) Σ_(k=1) ^n  (((−1)^k )/(k^3 (k+1)^3 ))  Σ_(k=1) ^n  (((−1)^k )/(k^3 (k+1)^3 )) =6 Σ_(k=1) ^n  (((−1)^k )/k)−3Σ_(k=1) ^n  (((−1)^k )/k^2 ) +Σ_(k=1) ^n  (((−1)^k )/k^3 )−6Σ_(k=1) ^n  (((−1)^k )/(k+1))  −3 Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 ))−Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 ))  but we have  Σ_(k=1) ^(n )  (((−1)^k )/k) →−ln2(n→+∞)  Σ_(k=1) ^n  (((−1)^k )/k^2 ) →Σ_(k=1) ^∞  (((−1)^k )/k^2 ) =δ(2) =(2^(1−2) −1)ξ(2) =−(1/2)×(π^2 /6) =−(π^2 /(12))  Σ_(k=1) ^n  (((−1)^k )/k^3 ) →Σ_(k=1) ^∞  (((−1)^k )/k^3 ) =δ(3) =(2^(1−3) −1)ξ(3) =−(3/4)ξ(3)  Σ_(k=1) ^n  (((−1)^k )/(k+1)) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k)−1 =−Σ_(k=1) ^(n+1 ) (((−1)^k )/k)−1  →ln(2)−1  Σ_(k=1) ^n  (((−1)^k )/((k+1)^2 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^2 ) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^2 ) −1 →−δ(2)−1=(π^2 /(12))−1  Σ_(k=1) ^n  (((−1)^k )/((k+1)^3 )) =Σ_(k=2) ^(n+1)  (((−1)^(k−1) )/k^3 ) =Σ_(k=1) ^(n+1)  (((−1)^(k−1) )/k^3 )−1 →−δ(3)−1  =(3/4)ξ(3)−1 ⇒  S =−6ln(2)−3(−(π^2 /(12)))−(3/4)ξ(3)−6(ln2−1)−3((π^2 /(12))−1)+ξ(3)+1  =−12ln(2)+(π^2 /4) +(1/4)ξ(3)+6−(π^2 /4) +4  S=−12ln(2)+10 +(1/4)ξ(3)
2)letS=n=1(1)nn3(n+1)3S=limn+k=1n(1)kk3(k+1)3k=1n(1)kk3(k+1)3=6k=1n(1)kk3k=1n(1)kk2+k=1n(1)kk36k=1n(1)kk+13k=1n(1)k(k+1)2k=1n(1)k(k+1)3butwehavek=1n(1)kkln2(n+)k=1n(1)kk2k=1(1)kk2=δ(2)=(2121)ξ(2)=12×π26=π212k=1n(1)kk3k=1(1)kk3=δ(3)=(2131)ξ(3)=34ξ(3)k=1n(1)kk+1=k=2n+1(1)k1k=k=1n+1(1)k1k1=k=1n+1(1)kk1ln(2)1k=1n(1)k(k+1)2=k=2n+1(1)k1k2=k=2n+1(1)k1k21δ(2)1=π2121k=1n(1)k(k+1)3=k=2n+1(1)k1k3=k=1n+1(1)k1k31δ(3)1=34ξ(3)1S=6ln(2)3(π212)34ξ(3)6(ln21)3(π2121)+ξ(3)+1=12ln(2)+π24+14ξ(3)+6π24+4S=12ln(2)+10+14ξ(3)

Leave a Reply

Your email address will not be published. Required fields are marked *