1-decompose-the-fraction-F-x-1-x-3-x-1-3-2-find-the-sum-n-1-1-n-n-3-n-1-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 104891 by mathmax by abdo last updated on 24/Jul/20 1)decomposethefractionF(x)=1x3(x+1)32)findthesum∑n=1∞(−1)nn3(n+1)3 Answered by mathmax by abdo last updated on 26/Jul/20 1)F(x)=1x3(x+1)3⇒F(x)=(1x(3+1))3=(1x−1x+1)3=1x3−3x2(x+1)+3x(x+1)2−1(x+1)3=1x3−3x(1x−1x+1)+3x+1(1x−1x+1)−1(x+1)3=1x3−3x2+3x(x+1)+3x(x+1)−3(x+1)2−1(x+1)3=1x3−3x2+6(1x−1x+1)−3(x+1)2−1(x+1)3⇒F(x)=6x−3x2+1x3−6x+1−3(x+1)2−1(x+1)3 Commented by mathmax by abdo last updated on 26/Jul/20 2)letS=∑n=1∞(−1)nn3(n+1)3⇒S=limn→+∞∑k=1n(−1)kk3(k+1)3∑k=1n(−1)kk3(k+1)3=6∑k=1n(−1)kk−3∑k=1n(−1)kk2+∑k=1n(−1)kk3−6∑k=1n(−1)kk+1−3∑k=1n(−1)k(k+1)2−∑k=1n(−1)k(k+1)3butwehave∑k=1n(−1)kk→−ln2(n→+∞)∑k=1n(−1)kk2→∑k=1∞(−1)kk2=δ(2)=(21−2−1)ξ(2)=−12×π26=−π212∑k=1n(−1)kk3→∑k=1∞(−1)kk3=δ(3)=(21−3−1)ξ(3)=−34ξ(3)∑k=1n(−1)kk+1=∑k=2n+1(−1)k−1k=∑k=1n+1(−1)k−1k−1=−∑k=1n+1(−1)kk−1→ln(2)−1∑k=1n(−1)k(k+1)2=∑k=2n+1(−1)k−1k2=∑k=2n+1(−1)k−1k2−1→−δ(2)−1=π212−1∑k=1n(−1)k(k+1)3=∑k=2n+1(−1)k−1k3=∑k=1n+1(−1)k−1k3−1→−δ(3)−1=34ξ(3)−1⇒S=−6ln(2)−3(−π212)−34ξ(3)−6(ln2−1)−3(π212−1)+ξ(3)+1=−12ln(2)+π24+14ξ(3)+6−π24+4S=−12ln(2)+10+14ξ(3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-39349Next Next post: lim-n-1-n-k-1-n-1-k-3-n-3-1-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.