Menu Close

1-Determine-the-following-if-it-is-convergent-or-divergent-n-1-sin-n-n-2-n-1-sin-n-p-n-p-p-R-find-the-range-of-p-when-it-is-convergent-




Question Number 86113 by Tony Lin last updated on 27/Mar/20
(1)Determine the following  if it is convergent or divergent  Σ_(n=1) ^∞ ((sin(n))/n)  (2)Σ_(n=1) ^∞ ((sin(n^p ))/n^p ), pεR,find the range   of p when it is convergent
(1)Determinethefollowingifitisconvergentordivergentn=1sin(n)n(2)n=1sin(np)np,pϵR,findtherangeofpwhenitisconvergent
Commented by Serlea last updated on 27/Mar/20
    Σ_(n=1) ^∞ ((sin(n))/n)  let U_n =((sin(n))/((n)))               =((1/n))sin(n)  V_n =(n/n)=1  lim_(n→∞) (U_n /V_n )=lim_(n→∞) ((sin(n))/n)=1  ΣU_n  and ΣV_(n )  but converges and diverges  It′s diverent from the P−series test  (p=0<1)    2) Σ((sin(n^p ))/n^p )  U_(n ) =((sin(n^p ))/n^p )  V_n =(n^P /n^p )=1  Lim_(n→∞) (U_n /V_n )=lim_(n→∞  ) ((sin(n^p ))/n^p )   let t=n^p   =1    P=1  Convergent when p≥1
n=1sin(n)nletUn=sin(n)(n)=(1n)sin(n)Vn=nn=1limnUnVn=limnsin(n)n=1ΣUnandΣVnbutconvergesanddivergesItsdiverentfromthePseriestest(p=0<1)2)Σsin(np)npUn=sin(np)npVn=nPnp=1LimnUnVn=limnsin(np)nplett=np=1P=1Convergentwhenp1
Commented by mathmax by abdo last updated on 27/Mar/20
1) Σ_(n=1) ^∞  ((sin(n))/n) converges due to abel dirichlet theorem  u_n =(1/n) is deceasing to 0  and ∃m>0  / ∣Σ_(k=0) ^(n ) sink∣<m
1)n=1sin(n)nconvergesduetoabeldirichlettheoremun=1nisdeceasingto0andm>0/k=0nsink∣<m
Commented by mathmax by abdo last updated on 27/Mar/20
∣Σ_(n=1) ^∞  ((sin(n^p ))/n^p )∣≤Σ_(n=1) ^∞ (1/n^p )  so if p>1  this serie converges...
n=1sin(np)np∣⩽n=11npsoifp>1thisserieconverges
Commented by Serlea last updated on 27/Mar/20
I think you are wrong bro
Ithinkyouarewrongbro
Commented by mathmax by abdo last updated on 27/Mar/20
i am not wrong  revise courses of series....
iamnotwrongrevisecoursesofseries.

Leave a Reply

Your email address will not be published. Required fields are marked *