Menu Close

1-determiner-tan-x-2-en-fonction-de-tan-x-2-on-donne-tan-x-1-8-tan-x-2-3-la-valeur-proche-de-x-




Question Number 192924 by a.lgnaoui last updated on 31/May/23
1•determiner: tan (x/2)  en fonction de tan x  2•on donne  tan x=(1/8)    tan (x/2)=?  3•  la valeur proche de x?
1determiner:tanx2enfonctiondetanx2ondonnetanx=18tanx2=?3lavaleurprochedex?
Answered by a.lgnaoui last updated on 31/May/23
1•tan x=((2t)/(1−t^2 ))    t=tan( (x/2))  y=tan x  ⇒  y(1−t^2 )=2t       y+yt^2 =2t       t^2 −((2t)/y)+1=0⇒   (t−(1/y))^2 +1−(1/y^2 )=0   (ty−1)^2 =1−y^2          t=(1/y)−((√(1−y^2 ))/y)      { ((y≠0   x≠(π/4)+kπ)),((y   ≤1)) :}    ⇒tan (x/2)=(1/(tan x))−((√(1−tan^2 x))/(tan x))  2•tan x=(1/8)        tan (x/2)   =  8  −(√(63))   3• tan (x/2)=0,062746    ⇒(x/2)=3,6°                           x=7,2^°
1tanx=2t1t2t=tan(x2)y=tanxy(1t2)=2ty+yt2=2tt22ty+1=0(t1y)2+11y2=0(ty1)2=1y2t=1y1y2y{y0xπ4+kπy1tanx2=1tanx1tan2xtanx2tanx=18tanx2=8633tanx2=0,062746x2=3,6°x=7,2°
Answered by MM42 last updated on 31/May/23
tanx=((2tanx)/(1−tan^2 (x/2)))  (1/8)=((2tan(x/2))/(1−tan^2 (x/2)))⇒tan^2 (x/2)+16tan(x/2)−1=0  tan(x/2)=−8±(√(65))
tanx=2tanx1tan2x218=2tanx21tan2x2tan2x2+16tanx21=0tanx2=8±65

Leave a Reply

Your email address will not be published. Required fields are marked *