Menu Close

1-developp-at-fourier-serie-f-x-ln-sinx-2-developp-at-fourier-serie-g-x-ln-cosx-sinx-3-developp-at-fourier-seri-e-h-x-ln-cosx-2sinx-




Question Number 97230 by mathmax by abdo last updated on 07/Jun/20
1) developp at fourier serie f(x)=ln(sinx)  2) developp at fourier serie g(x)=ln(cosx +sinx)  3)developp at fourier seri e h(x) =ln(cosx +2sinx)
1)developpatfourierserief(x)=ln(sinx)2)developpatfourierserieg(x)=ln(cosx+sinx)3)developpatfourierserieh(x)=ln(cosx+2sinx)
Answered by mathmax by abdo last updated on 07/Jun/20
1)we have f^โ€ฒ (x) =((cosx)/(sinx)) =((e^(ix)  +e^(โˆ’ix) )/((e^(ix) โˆ’e^(โˆ’ix) )/i)) =i ((e^(ix) +e^(โˆ’ix) )/(e^x โˆ’e^(โˆ’ix) ))  changement e^(ix)  =z give  f^โ€ฒ (x) =i((z+z^(โˆ’1) )/(zโˆ’z^(โˆ’1) )) =i ((z^2  +1)/(z^2 โˆ’1)) =โˆ’i ((z^2 +1)/(1โˆ’z^2 )) =โˆ’i(z^2  +1)ฮฃ_(n=0) ^โˆž  z^(2n)   =โˆ’iฮฃ_(n=0) ^โˆž  (z^(2n+2)  +z^(2n) ) =โˆ’i ฮฃ_(n=0) ^โˆž e^(i(2n+2)x)  โˆ’i ฮฃ_(n=0) ^โˆž  e^(i2nx)   =โˆ’i{ ฮฃ_(n=0) ^โˆž  (cos(2n+2)x +isin(2n+2)x) +ฮฃ_(n=0) ^โˆž ( cos(2nx)+isin(2nx))}  =โˆ’i(ฮฃ_(n=0) ^โˆž  cos(2n+2)x+ฮฃ_(n=0) ^โˆž  cos(2nx)) +ฮฃ_(n=0) ^โˆž  sin(2n+2)x +ฮฃ_(n=0) ^โˆž  sin(2nx)  but f^โ€ฒ (x) is real โ‡’f^โ€ฒ (x) =ฮฃ_(n=0) ^โˆž  sin(2n+2)x +ฮฃ_(n=0) ^โˆž  sin(2nx)  =ฮฃ_(n=1) ^โˆž  sin(2nx) +ฮฃ_(n=1) ^โˆž  sin(2nx) =2 ฮฃ_(n=1) ^โˆž  sin(2nx) โ‡’  f(x) =2ฮฃ_(n=1) ^โˆž  (โˆ’(1/(2n)))cos(2nx) +C =โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx))/n) +C  f((ฯ€/2)) =0 =โˆ’ฮฃ_(n=1) ^โˆž  ((cos(nฯ€))/n) +C =โˆ’ฮฃ_(n=1) ^โˆž  (((โˆ’1)^n )/n) +C =ln2 +C โ‡’  C =โˆ’ln2 โ‡’f(x) =โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx))/n) โˆ’ln(2)
1)wehavefโ€ฒ(x)=cosxsinx=eix+eโˆ’ixeixโˆ’eโˆ’ixi=ieix+eโˆ’ixexโˆ’eโˆ’ixchangementeix=zgivefโ€ฒ(x)=iz+zโˆ’1zโˆ’zโˆ’1=iz2+1z2โˆ’1=โˆ’iz2+11โˆ’z2=โˆ’i(z2+1)โˆ‘n=0โˆžz2n=โˆ’iโˆ‘n=0โˆž(z2n+2+z2n)=โˆ’iโˆ‘n=0โˆžei(2n+2)xโˆ’iโˆ‘n=0โˆžei2nx=โˆ’i{โˆ‘n=0โˆž(cos(2n+2)x+isin(2n+2)x)+โˆ‘n=0โˆž(cos(2nx)+isin(2nx))}=โˆ’i(โˆ‘n=0โˆžcos(2n+2)x+โˆ‘n=0โˆžcos(2nx))+โˆ‘n=0โˆžsin(2n+2)x+โˆ‘n=0โˆžsin(2nx)butfโ€ฒ(x)isrealโ‡’fโ€ฒ(x)=โˆ‘n=0โˆžsin(2n+2)x+โˆ‘n=0โˆžsin(2nx)=โˆ‘n=1โˆžsin(2nx)+โˆ‘n=1โˆžsin(2nx)=2โˆ‘n=1โˆžsin(2nx)โ‡’f(x)=2โˆ‘n=1โˆž(โˆ’12n)cos(2nx)+C=โˆ’โˆ‘n=1โˆžcos(2nx)n+Cf(ฯ€2)=0=โˆ’โˆ‘n=1โˆžcos(nฯ€)n+C=โˆ’โˆ‘n=1โˆž(โˆ’1)nn+C=ln2+Cโ‡’C=โˆ’ln2โ‡’f(x)=โˆ’โˆ‘n=1โˆžcos(2nx)nโˆ’ln(2)
Commented by mathmax by abdo last updated on 07/Jun/20
2) g(x) =ln(cosx +sinx) โ‡’g(x) =ln((โˆš2)sin(x+(ฯ€/4)))  =(1/2)ln(2) +ln(x+(ฯ€/4)) =(1/2)ln(2)โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2n(x+(ฯ€/4))))/n)โˆ’ln(2)  =โˆ’((ln(2))/2) โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx +n(ฯ€/2)))/n)
2)g(x)=ln(cosx+sinx)โ‡’g(x)=ln(2sin(x+ฯ€4))=12ln(2)+ln(x+ฯ€4)=12ln(2)โˆ’โˆ‘n=1โˆžcos(2n(x+ฯ€4))nโˆ’ln(2)=โˆ’ln(2)2โˆ’โˆ‘n=1โˆžcos(2nx+nฯ€2)n
Commented by mathmax by abdo last updated on 07/Jun/20
3)h(x) =ln(cosx +2sinx) we have cosx +2sinx =(โˆš5)((1/( (โˆš5)))cosx +(2/( (โˆš5)))sinx)  let sinฮฑ =(1/( (โˆš5))) and cosฮฑ =(2/( (โˆš5))) โ‡’tanฮฑ =(1/2) โ‡’ฮฑ =arctan((1/2)) โ‡’  cosx +2sinx =(โˆš5)sin(x+ฮฑ) โ‡’h(x) =(1/2)ln5 +ln(sin(x+ฮฑ))  =((ln5)/2)โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2n(x+ฮฑ)))/n) โˆ’ln(2)  =((ln5)/2)โˆ’ln(2) โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx+2n arctan((1/2))))/n)
3)h(x)=ln(cosx+2sinx)wehavecosx+2sinx=5(15cosx+25sinx)letsinฮฑ=15andcosฮฑ=25โ‡’tanฮฑ=12โ‡’ฮฑ=arctan(12)โ‡’cosx+2sinx=5sin(x+ฮฑ)โ‡’h(x)=12ln5+ln(sin(x+ฮฑ))=ln52โˆ’โˆ‘n=1โˆžcos(2n(x+ฮฑ))nโˆ’ln(2)=ln52โˆ’ln(2)โˆ’โˆ‘n=1โˆžcos(2nx+2narctan(12))n
Answered by mathmax by abdo last updated on 07/Jun/20
another method for f(x) =ln(sinx) we have  f(x) =ln(((e^(ix) โˆ’e^(โˆ’ix) )/(2i))) =ln(e^(ix) โˆ’e^(โˆ’ix) )โˆ’ln(2i)  =ln(e^(ix) )+ln(1โˆ’e^(โˆ’2ix) )โˆ’ln(2i) =ix โˆ’ln2โˆ’lni +ln(1โˆ’e^(โˆ’2ix) )    =ixโˆ’ln(2)โˆ’((iฯ€)/2) โˆ’ฮฃ_(n=1) ^โˆž  (e^(โˆ’2inx) /n)  =i(xโˆ’(ฯ€/2))โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx))/n) +i ฮฃ_(n=1) ^โˆž  ((sin(2nx))/n) โˆ’ln(2)  f(x)โˆˆR โ‡’f(x) =โˆ’ฮฃ_(n=1) ^โˆž  ((cos(2nx))/n)โˆ’ln(2) also we get  ฮฃ_(n=1) ^โˆž  ((sin(2nx))/n) =(ฯ€/2)โˆ’x
anothermethodforf(x)=ln(sinx)wehavef(x)=ln(eixโˆ’eโˆ’ix2i)=ln(eixโˆ’eโˆ’ix)โˆ’ln(2i)=ln(eix)+ln(1โˆ’eโˆ’2ix)โˆ’ln(2i)=ixโˆ’ln2โˆ’lni+ln(1โˆ’eโˆ’2ix)=ixโˆ’ln(2)โˆ’iฯ€2โˆ’โˆ‘n=1โˆžeโˆ’2inxn=i(xโˆ’ฯ€2)โˆ’โˆ‘n=1โˆžcos(2nx)n+iโˆ‘n=1โˆžsin(2nx)nโˆ’ln(2)f(x)โˆˆRโ‡’f(x)=โˆ’โˆ‘n=1โˆžcos(2nx)nโˆ’ln(2)alsowegetโˆ‘n=1โˆžsin(2nx)n=ฯ€2โˆ’x

Leave a Reply

Your email address will not be published. Required fields are marked *