Menu Close

1-e-2x-e-2x-dx-




Question Number 61966 by aliesam last updated on 12/Jun/19
∫(1/(e^(2x) −e^(−2x) )) dx
1e2xe2xdx
Commented by kaivan.ahmadi last updated on 12/Jun/19
∫(1/(e^(2x) −(1/e^(2x) )))dx=∫(e^(2x) /(e^(2x) −1))dx=  ∫(1+(1/(e^(2x) −1)))dx=x+∫(dx/(e^(2x) −1))=x+∫(dx/((e^x )^2 −1))  (1/((e^x )^2 −1))=(a/(e^x −1))+(b/(e^x +1))=(((a+b)e^x +(a−b))/((e^x )^2 −1))  ⇒ { ((a+b=0)),((a−b=1)) :}⇒ { ((a=(1/2))),((b=−(1/2))) :}  (1/2)(∫(dx/(e^x −1))−∫(dx/(e^x +1)))=(1/2)(∫(dx/(e^x (1−(1/e^x ))))−∫(dx/(e^x (1+(1/e^x )))))  for firs integral set  u=1−(1/e^x )⇒du=(1/e^x )dx  for  anothere integral set w=1+(1/e^x )⇒dw=−(1/e^x )dx  so we have  (1/2)(∫(du/u)+∫(dw/w))=(1/2)(lnu+lnw)=(1/2)(ln(1−(1/e^x ))+ln(1+(1/e^x )))=  (1/2)ln(1−(1/e^(2x) ))
1e2x1e2xdx=e2xe2x1dx=(1+1e2x1)dx=x+dxe2x1=x+dx(ex)211(ex)21=aex1+bex+1=(a+b)ex+(ab)(ex)21{a+b=0ab=1{a=12b=1212(dxex1dxex+1)=12(dxex(11ex)dxex(1+1ex))forfirsintegralsetu=11exdu=1exdxforanothereintegralsetw=1+1exdw=1exdxsowehave12(duu+dww)=12(lnu+lnw)=12(ln(11ex)+ln(1+1ex))=12ln(11e2x)
Commented by maxmathsup by imad last updated on 12/Jun/19
at form of serie  I =∫    (dx/(e^(2x) −e^(−2x) )) =∫  (e^(−2x) /(1−e^(−4x) )) dx = ∫ e^(−2x) (Σ_(n=0) ^∞  e^(−4nx) dx)  =Σ_(n=0) ^∞   ∫ e^(−(2+4n)x) dx =Σ_(n=0) ^∞  A_n    with A_n =∫ e^(−(4n+2)x) dx  =((−1)/(4n+2)) e^(−(4n+2))  ⇒ I =−Σ_(n=0) ^∞  (1/(4n+2)) e^(−(4n+2))   +C .
atformofserieI=dxe2xe2x=e2x1e4xdx=e2x(n=0e4nxdx)=n=0e(2+4n)xdx=n=0AnwithAn=e(4n+2)xdx=14n+2e(4n+2)I=n=014n+2e(4n+2)+C.
Commented by kaivan.ahmadi last updated on 12/Jun/19
I=∫(1/(e^(2x) −1))dx=∫(dx/(e^(2x) (1−(1/e^(2x) ))))  set  u=1−(1/e^(2x) )⇒du=((2dx)/e^(2x) )  I=(1/2)∫(du/u)=(1/2)lnu=(1/2)ln(1−(1/e^(2x) ))  this is short way for this integral
I=1e2x1dx=dxe2x(11e2x)setu=11e2xdu=2dxe2xI=12duu=12lnu=12ln(11e2x)thisisshortwayforthisintegral
Commented by maxmathsup by imad last updated on 12/Jun/19
(1/(e^(2x) −(1/e^(2x) ))) =(e^(2x) /(e^(4x) −1)) ≠ (e^(2x) /(e^(2x) −1))
1e2x1e2x=e2xe4x1e2xe2x1
Answered by MJS last updated on 13/Jun/19
∫(dx/(e^(2x) −e^(−2x) ))=       [t=e^(2x)  → dx=(dt/(2t))]  =∫(dt/(2(t^2 −1)))=∫((1/(4(t−1)))−(1/(4(t+1))))dt=(1/4)ln ∣((t−1)/(t+1))∣ =  =(1/4)ln ((e^(2x) −1)/(e^(2x) +1)) +C=(1/4)ln tanh x +C  btw. ∫(dx/(e^(2x) −e^(−2x) ))=∫(dx/(2sinh 2x))
dxe2xe2x=[t=e2xdx=dt2t]=dt2(t21)=(14(t1)14(t+1))dt=14lnt1t+1==14lne2x1e2x+1+C=14lntanhx+Cbtw.dxe2xe2x=dx2sinh2x
Answered by mr W last updated on 13/Jun/19
∫(1/(e^(2x) −e^(−2x) )) dx  =(1/2)∫(1/(e^(2x) −e^(−2x) )) d(2x)  =(1/2)∫(1/(e^t −e^(−t) )) dt  =(1/2)∫(e^t /((e^t )^2 −1)) dt  =(1/2)∫(1/((e^t )^2 −1)) d(e^t )  =(1/2)∫(1/(s^2 −1)) ds  =(1/4)∫[(1/(s−1))−(1/(s+1))] ds  =(1/4)ln ∣((s−1)/(s+1))∣+C  =(1/4)ln ∣((e^(2x) −1)/(e^(2x) +1))∣+C
1e2xe2xdx=121e2xe2xd(2x)=121etetdt=12et(et)21dt=121(et)21d(et)=121s21ds=14[1s11s+1]ds=14lns1s+1+C=14lne2x1e2x+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *