Menu Close

1-e-e-e-ln-x-ln-ln-x-x-dx-2-lim-x-pi-4-cosec-2-x-2-cot-x-1-3-Given-xy-16y-9x-45-4-x-3-y-5-find-9-xy-




Question Number 110875 by bemath last updated on 31/Aug/20
(1)∫_e ^e^e   ((ln (x).ln (ln (x)))/x) dx ?  (2)lim_(x→π/4)  ((cosec^2 x−2)/(cot x−1))  (3) Given  { ((xy=((16y−9x)/(45)))),(((4/( (√x)))−(3/( (√y))) = 5)) :}  ⇒find 9(√(xy))
(1)eeeln(x).ln(ln(x))xdx?(2)limxπ/4cosec2x2cotx1(3)Given{xy=16y9x454x3y=5find9xy
Answered by Dwaipayan Shikari last updated on 31/Aug/20
∫_e ^e^e  ((log(x)log(log(x)))/x)dx   (logx=t,(1/x)=(dt/dx))  ∫_1 ^e tlog(t)dt  [logt.(t^2 /2)]_1 ^e −∫_1 ^e (t/2)=(e^2 /2)−(e^2 /4)+(1/4)=(1/4)(e^2 +1)
eeelog(x)log(log(x))xdx(logx=t,1x=dtdx)1etlog(t)dt[logt.t22]1e1et2=e22e24+14=14(e2+1)
Commented by bemath last updated on 31/Aug/20
thank you sir.
thankyousir.
Commented by bemath last updated on 31/Aug/20
Answered by Dwaipayan Shikari last updated on 31/Aug/20
2)lim_(x→(π/4)) ((1−2sin^2 x)/(sin^2 x(cosx−sinx))).sinx=lim_(x→(π/4)) ((cos^2 x−sin^2 x)/(sinx(cosx−sinx)))=(√2).(sinx+cosx)  =2
2)limxπ412sin2xsin2x(cosxsinx).sinx=limxπ4cos2xsin2xsinx(cosxsinx)=2.(sinx+cosx)=2
Commented by bemath last updated on 31/Aug/20
Answered by bobhans last updated on 31/Aug/20
(3)  { ((45=((16y−9x)/(xy))=((16)/x)−(9/9)=((4/( (√x))))^2 −((3/( (√y))))^2 )),(((4/( (√x)))−(3/( (√y))) = 5)) :}   { ((45=((4/( (√x)))−(3/( (√y))))((4/( (√x)))+(3/( (√y))))...(i))),((5=(4/( (√x)))−(3/( (√y)))...(ii))) :}  ⇔ 45 = 5((4/( (√x)))+(3/( (√y)))) ; (4/( (√x)))+(3/( (√y))) = 9...(iii)  (i)+(iii)⇒ (8/( (√x))) = 14⇒(√x) = (4/7) and (3/( (√y)))=9−7  (√y) = (3/2). therefore 9(√(xy)) = 9×(4/7)×(3/2)  = ((54)/7)
(3){45=16y9xxy=16x99=(4x)2(3y)24x3y=5{45=(4x3y)(4x+3y)(i)5=4x3y(ii)45=5(4x+3y);4x+3y=9(iii)(i)+(iii)8x=14x=47and3y=97y=32.therefore9xy=9×47×32=547
Commented by bemath last updated on 31/Aug/20
thank you
thankyou
Answered by mathmax by abdo last updated on 31/Aug/20
I =∫_e ^e^e   ((ln(x)ln(lnx))/x) dx  changement lnx =t give  I =∫_1 ^e  ((t ln(t))/e^t ) e^t  dt =∫_1 ^e  tln(t)dt =[(t^2 /2)ln(t)]_1 ^e −∫_1 ^e (t^2 /2)(dt/t)  =(e^2 /2) −(1/2)∫_1 ^e  t dt =(e^2 /2)−(1/2)[(t^2 /2)]_1 ^e  =(e^2 /2)−(1/4){e^2 −1} =(e^2 /4) +(1/4) ⇒  I =((1+e^2 )/4)
I=eeeln(x)ln(lnx)xdxchangementlnx=tgiveI=1etln(t)etetdt=1etln(t)dt=[t22ln(t)]1e1et22dtt=e22121etdt=e2212[t22]1e=e2214{e21}=e24+14I=1+e24

Leave a Reply

Your email address will not be published. Required fields are marked *