Menu Close

1-e-e-ln-x-dx-




Question Number 88902 by M±th+et£s last updated on 13/Apr/20
∫_(1/e) ^e ln∣x∣ dx
$$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {ln}\mid{x}\mid\:{dx} \\ $$
Commented by abdomathmax last updated on 13/Apr/20
∫_(1/e) ^e  ln∣x∣dx =[xlnx−x]_(1/e) ^e  =(e−e)−(−(1/e)−(1/e))  =(2/e)
$$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{ln}\mid{x}\mid{dx}\:=\left[{xlnx}−{x}\right]_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:=\left({e}−{e}\right)−\left(−\frac{\mathrm{1}}{{e}}−\frac{\mathrm{1}}{{e}}\right) \\ $$$$=\frac{\mathrm{2}}{{e}} \\ $$
Commented by abdomathmax last updated on 13/Apr/20
another way let λ>0  we have  ∣x∣=x ⇒  ∫_(1/λ) ^λ  ln(x)dx =[xlnx −x]_(1/λ) ^λ  =λ lnλ−λ−((1/λ)ln((1/λ))−(1/λ))  =λln(λ)−λ+((ln(λ))/λ) +(1/λ)  λ=e ⇒∫_(1/e) ^e  ln(x)dx =e−e+(1/e)+(1/e) =(2/e)
$${another}\:{way}\:{let}\:\lambda>\mathrm{0}\:\:{we}\:{have}\:\:\mid{x}\mid={x}\:\Rightarrow \\ $$$$\int_{\frac{\mathrm{1}}{\lambda}} ^{\lambda} \:{ln}\left({x}\right){dx}\:=\left[{xlnx}\:−{x}\right]_{\frac{\mathrm{1}}{\lambda}} ^{\lambda} \:=\lambda\:{ln}\lambda−\lambda−\left(\frac{\mathrm{1}}{\lambda}{ln}\left(\frac{\mathrm{1}}{\lambda}\right)−\frac{\mathrm{1}}{\lambda}\right) \\ $$$$=\lambda{ln}\left(\lambda\right)−\lambda+\frac{{ln}\left(\lambda\right)}{\lambda}\:+\frac{\mathrm{1}}{\lambda} \\ $$$$\lambda={e}\:\Rightarrow\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} \:{ln}\left({x}\right){dx}\:={e}−{e}+\frac{\mathrm{1}}{{e}}+\frac{\mathrm{1}}{{e}}\:=\frac{\mathrm{2}}{{e}} \\ $$
Commented by M±th+et£s last updated on 13/Apr/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by turbo msup by abdo last updated on 13/Apr/20
you are welcome
$${you}\:{are}\:{welcome} \\ $$
Answered by TANMAY PANACEA. last updated on 13/Apr/20
t=∣x∣  dt=dx   since x>0  ∫_(1/e) ^e lnt dt  =∣tlnt−t∣_(1/e) ^e   =elne−e−(1/e)ln((1/e))+(1/e)  =−(1/e)×−1+(1/e)=(2/e)
$${t}=\mid{x}\mid \\ $$$${dt}={dx}\:\:\:{since}\:{x}>\mathrm{0} \\ $$$$\int_{\frac{\mathrm{1}}{{e}}} ^{{e}} {lnt}\:{dt} \\ $$$$=\mid{tlnt}−{t}\mid_{\frac{\mathrm{1}}{{e}}} ^{{e}} \\ $$$$={elne}−{e}−\frac{\mathrm{1}}{{e}}{ln}\left(\frac{\mathrm{1}}{{e}}\right)+\frac{\mathrm{1}}{{e}} \\ $$$$=−\frac{\mathrm{1}}{{e}}×−\mathrm{1}+\frac{\mathrm{1}}{{e}}=\frac{\mathrm{2}}{{e}} \\ $$$$ \\ $$$$ \\ $$
Commented by M±th+et£s last updated on 13/Apr/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$
Commented by TANMAY PANACEA. last updated on 13/Apr/20
most welcome sir
$${most}\:{welcome}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *