Menu Close

1-e-pi-cos-lnx-x-dx-




Question Number 91904 by Ar Brandon last updated on 03/May/20
∫_1 ^e^π  ((cos(lnx))/x)dx
$$\int_{\mathrm{1}} ^{\mathrm{e}^{\pi} } \frac{\mathrm{cos}\left(\mathrm{lnx}\right)}{\mathrm{x}}\mathrm{dx} \\ $$
Commented by Prithwish Sen 1 last updated on 03/May/20
put ln(x)=t
$$\mathrm{put}\:\mathrm{ln}\left(\mathrm{x}\right)=\mathrm{t} \\ $$
Commented by Ar Brandon last updated on 03/May/20
Okay, let me try. Thanks
$$\mathrm{Okay},\:\mathrm{let}\:\mathrm{me}\:\mathrm{try}.\:\mathrm{Thanks} \\ $$
Commented by mathmax by abdo last updated on 03/May/20
I =∫_1 ^e^π   ((cos(lnx))/x)dx vhangement lnx =t give   I =∫_0 ^π  ((cos(t))/e^t ) e^t  dt =∫_0 ^π  cost dt =[sint]_0 ^π  =0
$${I}\:=\int_{\mathrm{1}} ^{{e}^{\pi} } \:\frac{{cos}\left({lnx}\right)}{{x}}{dx}\:{vhangement}\:{lnx}\:={t}\:{give}\: \\ $$$${I}\:=\int_{\mathrm{0}} ^{\pi} \:\frac{{cos}\left({t}\right)}{{e}^{{t}} }\:{e}^{{t}} \:{dt}\:=\int_{\mathrm{0}} ^{\pi} \:{cost}\:{dt}\:=\left[{sint}\right]_{\mathrm{0}} ^{\pi} \:=\mathrm{0} \\ $$
Answered by Ar Brandon last updated on 03/May/20

Leave a Reply

Your email address will not be published. Required fields are marked *