Menu Close

1-e-tan-1-x-x-log-x-2-1-dx-




Question Number 101816 by Dwaipayan Shikari last updated on 04/Jul/20
∫_1 ^(  e) (((tan^(−1) x)/x)+((log)/(x^2 +1)))dx
1e(tan1xx+logx2+1)dx
Answered by Ar Brandon last updated on 05/Jul/20
Let I=∫_1 ^e {((tan^(−1) x)/x)+((logx)/(x^2 +1))}dx  (d/dx){tan^(−1) x∙logx}=((tan^(−1) x)/x)+((logx)/(1+x^2 ))  ⇒I=∫_1 ^e d(tan^(−1) x∙logx)=[tan^(−1) x∙logx]_1 ^e           =tan^(−1) (e)
LetI=1e{tan1xx+logxx2+1}dxddx{tan1xlogx}=tan1xx+logx1+x2I=1ed(tan1xlogx)=[tan1xlogx]1e=tan1(e)

Leave a Reply

Your email address will not be published. Required fields are marked *