1-e-tanx-t-1-t-2-dt-1-e-cotx-1-t-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 101378 by Rohit@Thakur last updated on 02/Jul/20 ∫1etanxt1+t2dt+∫1ecotx1t(1+t2)dt Commented by Dwaipayan Shikari last updated on 02/Jul/20 12∫1etanx2tdt1+t2=[12log(1+t2)]1etanx=12log(sec2x)−12log(1+e2e2)−12∫1ecotx−2dtt31+1t2=[−12log(1+1t2)]1ecotx=−12log(cosec2xcot2x)+12log(1+e2)=−12log(sec2x)+12log(1+e2)So∫1etanxt1+t2+∫1ecotx1t(1+t2)=12log(1+e2)−12log(1+e2e2)=12loge2=1★L Answered by 1549442205 last updated on 02/Jul/20 A=∫t1+t2dt=12∫d(1+t2)1+t2=12ln(1+t2)B=∫dtt(1+t2).Puttingt=tanu⇒dt⇒{dt=(1+t2)dusinu=11+cot2u=11+1t2=t1+t2⇒B=∫dutanu=∫cosusinudu=∫dsinusinu=ln∣sinu∣=ln∣t1+t2∣Hence,∫1etanxt1+t2dt+∫1ecotx1t(1+t2)dt=A(tanx)−A(1e)+B(cotx)−B(1e)=12ln1cos2x−12ln(1+e−2)+ln∣cosx∣−ln11+e2=−12ln(1+e−2)+ln1+e2=ln1+e21+e−2=lne=1 Answered by mathmax by abdo last updated on 02/Jul/20 wehave∫1etanxt1+t2dt=[12ln(1+t2)]1etanx=12ln(1+tan2x)−12ln(1+e−2)=12ln(1cos2x)−12ln(1+e−2)=−ln∣cosx∣−12ln(1+e−2)∫1ecotanxdtt(1+t2)=∫1e1tanx(1t−t1+t2)dt=[ln∣t∣]1e1tanx−[12ln(1+t2)]1e1tanx=−ln∣tanx∣+1−12ln(1+1tan2x)−12ln(1+e−2)=−ln∣tanx∣−12ln(1+tan2x)+ln∣tanx∣−12ln(1+e−2)+1⇒∫1etanxtdt1+t2+∫1ecotanxdtt(1+t2)=12ln(1+tan2x)−12ln(1+e−2)−12ln(1+tan2x)−12ln(1+e−2)+1=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-166911Next Next post: Question-35844 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.