1-Evaluate-I-25x-2-4-x-dx-2-Find-value-of-2-5-4-5-f-x-dx-3-Find-value-of-4-5-2-5-f-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 179383 by Acem last updated on 29/Oct/22 1∙EvaluateI=∫25x2−4xdx2∙Findvalueof∫2545f(x)dx3∙Findvalueof∫−45−25f(x)dx Answered by cortano1 last updated on 29/Oct/22 Y=∫(5x)2−22xdxlet5x=2sect⇒dx=25secttantdtsect=5x2orcost=25xY=∫4sec2t−4(25sect).(25secttantdt)Y=∫2tan2tdtY=2∫(sec2t−1)dtY=2tant−2t+cY=225x2−42−2arccos(25x)+cY=25x2−4−2arccos(25x)+corY=25x2−4−2arcsec(5x2)+c Commented by Acem last updated on 29/Oct/22 Excellent! Answered by Acem last updated on 29/Oct/22 2∙∫254525x2−4xdx…(1)25x2−4=2(5x2)2−1secθ=5x2⇔x=25secθ⇒dx=25secθtanθdθdxx=tanθ…(2)2(5x2)2−1=2sec2θ−1=2∣tanθ∣Beawake!…(3)x=25⇒secθ=1⇒θ1=0x=45⇒secθ=2⇒θ2=π3as0<θ<π3⇒∣tanθ∣=tanθbycompensate2,3in1:a=2∫0π3(sec2θ−1)dθ=2(tanθ−θ)∣0π3a=2(3−π3)3∙Next Answered by Acem last updated on 29/Oct/22 3∙∫−45−2525x2−4xdx…(1)secθ=5x2⇔x=25secθ⇒dx=25secθtanθdθdxx=tanθ…(2)2(5x2)2−1=2sec2θ−1=2∣tanθ∣Beawake!…(3)x=−45⇒secθ=−2⇒θ1=2π3x=−25⇒secθ=−1⇒θ2=πas2π3<θ<π⇒∣tanθ∣=−tanθbycompensate2,3in1:a=−2∫2π3π(sec2θ−1)dθ=−2(tanθ−θ)∣2π3πa=2(π3−3) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: f-x-x-x-x-1-x-x-x-1-it-s-a-funny-one-f-1-1-f-2-2-2-f-3-3-3-3-f-4-4-4-4-4-f-5-5-5-5-5-5-find-f-x-Next Next post: Question-179386 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.