Menu Close

1-Evaluate-I-25x-2-4-x-dx-2-Find-value-of-2-5-4-5-f-x-dx-3-Find-value-of-4-5-2-5-f-x-dx-




Question Number 179383 by Acem last updated on 29/Oct/22
1• Evaluate I=∫  ((√(25x^2 −4))/x) dx   2• Find value of ∫_(2/5) ^( (4/5)) f(x) dx   3• Find value of ∫_(− (4/5)) ^( − (2/5)) f(x) dx
1EvaluateI=25x24xdx2Findvalueof2545f(x)dx3Findvalueof4525f(x)dx
Answered by cortano1 last updated on 29/Oct/22
 Y = ∫ ((√((5x)^2 −2^2 ))/x) dx   let 5x=2sec t ⇒dx=(2/5)sec t tan t dt           sec t =((5x)/2) or cos t=(2/(5x))    Y= ∫ ((√(4sec^2 t−4))/(((2/5)sec t))) .((2/5)sec t tan t dt)     Y=∫ 2tan^2 t dt      Y=2 ∫ (sec^2 t−1)dt      Y= 2tan t−2t+c      Y=2 ((√(25x^2 −4))/2)−2arccos ((2/(5x)))+c      Y=(√(25x^2 −4))−2arccos ((2/(5x)))+c   or Y=(√(25x^2 −4)) −2arcsec (((5x)/2))+c
Y=(5x)222xdxlet5x=2sectdx=25secttantdtsect=5x2orcost=25xY=4sec2t4(25sect).(25secttantdt)Y=2tan2tdtY=2(sec2t1)dtY=2tant2t+cY=225x2422arccos(25x)+cY=25x242arccos(25x)+corY=25x242arcsec(5x2)+c
Commented by Acem last updated on 29/Oct/22
Excellent!
Excellent!
Answered by Acem last updated on 29/Oct/22
2• ∫_(2/5) ^(4/5)  ((√(25x^2 −4))/x) dx ... (1)   (√(25x^2 −4)) = 2 (√((((5x)/2))^2 −1))   sec θ= ((5x)/2) ⇔ x= (2/5) sec θ ⇒ dx= (2/5) sec θ tan θ dθ   (dx/x)= tan θ ...(2)   2 (√((((5x)/2))^2 −1))= 2 (√(sec^2  θ−1)) = 2 ∣tan θ∣^(Be awake!)  ...(3)   x= (2/5) ⇒ sec θ= 1 ⇒ θ_1 = 0   x= (4/5) ⇒ sec θ= 2 ⇒ θ_2 = (π/3)   as 0< θ< (π/3) ⇒ ∣tan θ∣= tan θ   by compensate 2, 3 in 1:   a= 2∫_0 ^(π/3)  (sec^2  θ−1) dθ= 2 (tan θ−θ)∣_( 0) ^(π/3)    a= 2 ((√3) − (π/3))    3• Next
2254525x24xdx(1)25x24=2(5x2)21secθ=5x2x=25secθdx=25secθtanθdθdxx=tanθ(2)2(5x2)21=2sec2θ1=2tanθBeawake!(3)x=25secθ=1θ1=0x=45secθ=2θ2=π3as0<θ<π3tanθ∣=tanθbycompensate2,3in1:a=20π3(sec2θ1)dθ=2(tanθθ)0π3a=2(3π3)3Next
Answered by Acem last updated on 29/Oct/22
  3• ∫_((−4)/5) ^((−2)/5)  ((√(25x^2 −4))/x) dx ... (1)   sec θ= ((5x)/2) ⇔ x= (2/5) sec θ ⇒ dx= (2/5) sec θ tan θ dθ   (dx/x)= tan θ ...(2)   2 (√((((5x)/2))^2 −1))= 2 (√(sec^2  θ−1)) = 2 ∣tan θ∣^(Be awake!)  ...(3)   x= ((−4)/5) ⇒ sec θ= −2 ⇒ θ_1 = ((2 π)/3)   x= ((−2)/5) ⇒ sec θ= −1 ⇒ θ_2 = π   as ((2 π)/3)< θ< π ⇒ ∣tan θ∣= −tan θ   by compensate 2, 3 in 1:   a= −2∫_((2 π)/3) ^( π)  (sec^2  θ−1) dθ= −2 (tan θ−θ)∣_( ((2 π)/3)) ^(  π)    a= 2 ((π/3) − (√3))
3452525x24xdx(1)secθ=5x2x=25secθdx=25secθtanθdθdxx=tanθ(2)2(5x2)21=2sec2θ1=2tanθBeawake!(3)x=45secθ=2θ1=2π3x=25secθ=1θ2=πas2π3<θ<πtanθ∣=tanθbycompensate2,3in1:a=22π3π(sec2θ1)dθ=2(tanθθ)2π3πa=2(π33)

Leave a Reply

Your email address will not be published. Required fields are marked *