Menu Close

1-Evaluate-the-sum-2-0-3-2-1-3-2-2-3-2-1000-3-2-find-2-98-mod-33-




Question Number 104093 by bramlex last updated on 19/Jul/20
(1)Evaluate the sum ⌊(2^0 /3)⌋+⌊(2^1 /3)⌋+⌊(2^2 /3)⌋+...+⌊(2^(1000) /3)⌋  (2) find 2^(98)  (mod 33)
(1)Evaluatethesum203+213+223++210003(2)find298(mod33)
Answered by JDamian last updated on 19/Jul/20
(2) 2^(98) mod 33=[(2^5 )^(19) 2^3 ]mod 33=  ={[(2^5 )^(19) ]mod 33} ∙ (8 mod 33)=  ={[(32)^(19) ]mod 33} ∙ (8 mod 33)=  =(32 mod 33)^(19)  ∙ (8 mod 33)=  =(32 mod 33)^(19)  ∙ (8 mod 33)=  =[(−1)^(19)  ∙ 8] mod 33 = (−8)mod 33=  =(33−8)mod 33 = 25 mod 33 = 25
(2)298mod33=[(25)1923]mod33=={[(25)19]mod33}(8mod33)=={[(32)19]mod33}(8mod33)==(32mod33)19(8mod33)==(32mod33)19(8mod33)==[(1)198]mod33=(8)mod33==(338)mod33=25mod33=25
Answered by john santu last updated on 19/Jul/20
(1) Note that we have 2^x =   { ((1 (mod 3) , if x is even )),((2  (mod 3), if x is odd )) :}  Therefore we get Σ_(n = 0) ^(1000) ⌊(2^n /3)⌋ = 0  + Σ_(n = 1) ^(500) (⌊(2^(2n−1) /3)⌋+⌊(2^(2n) /3)⌋) = Σ_(n = 1) ^(500) (((2^(2n−1) −2)/3)+((2^(2n) −1)/3))  = (1/3)Σ_(n = 1) ^(500) (2^(2n−1) +2^(2n) −1)  = (1/3)Σ_(n = 1) ^(1000) 2^n −500   = (1/3)(2^(1001) −2)−500 .(JS ⊛)
(1)Notethatwehave2x={1(mod3),ifxiseven2(mod3),ifxisoddThereforeweget1000n=02n3=0+500n=1(22n13+22n3)=500n=1(22n123+22n13)=13500n=1(22n1+22n1)=131000n=12n500=13(210012)500.(JS)

Leave a Reply

Your email address will not be published. Required fields are marked *