Question Number 104093 by bramlex last updated on 19/Jul/20
$$\left(\mathrm{1}\right){Evaluate}\:{the}\:{sum}\:\lfloor\frac{\mathrm{2}^{\mathrm{0}} }{\mathrm{3}}\rfloor+\lfloor\frac{\mathrm{2}^{\mathrm{1}} }{\mathrm{3}}\rfloor+\lfloor\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{3}}\rfloor+…+\lfloor\frac{\mathrm{2}^{\mathrm{1000}} }{\mathrm{3}}\rfloor \\ $$$$\left(\mathrm{2}\right)\:{find}\:\mathrm{2}^{\mathrm{98}} \:\left({mod}\:\mathrm{33}\right)\: \\ $$
Answered by JDamian last updated on 19/Jul/20
$$\left(\mathrm{2}\right)\:\mathrm{2}^{\mathrm{98}} {mod}\:\mathrm{33}=\left[\left(\mathrm{2}^{\mathrm{5}} \right)^{\mathrm{19}} \mathrm{2}^{\mathrm{3}} \right]{mod}\:\mathrm{33}= \\ $$$$=\left\{\left[\left(\mathrm{2}^{\mathrm{5}} \right)^{\mathrm{19}} \right]{mod}\:\mathrm{33}\right\}\:\centerdot\:\left(\mathrm{8}\:{mod}\:\mathrm{33}\right)= \\ $$$$=\left\{\left[\left(\mathrm{32}\right)^{\mathrm{19}} \right]{mod}\:\mathrm{33}\right\}\:\centerdot\:\left(\mathrm{8}\:{mod}\:\mathrm{33}\right)= \\ $$$$=\left(\mathrm{32}\:{mod}\:\mathrm{33}\right)^{\mathrm{19}} \:\centerdot\:\left(\mathrm{8}\:{mod}\:\mathrm{33}\right)= \\ $$$$=\left(\mathrm{32}\:{mod}\:\mathrm{33}\right)^{\mathrm{19}} \:\centerdot\:\left(\mathrm{8}\:{mod}\:\mathrm{33}\right)= \\ $$$$=\left[\left(−\mathrm{1}\right)^{\mathrm{19}} \:\centerdot\:\mathrm{8}\right]\:{mod}\:\mathrm{33}\:=\:\left(−\mathrm{8}\right){mod}\:\mathrm{33}= \\ $$$$=\left(\mathrm{33}−\mathrm{8}\right){mod}\:\mathrm{33}\:=\:\mathrm{25}\:{mod}\:\mathrm{33}\:=\:\mathrm{25} \\ $$
Answered by john santu last updated on 19/Jul/20
$$\left(\mathrm{1}\right)\:\mathcal{N}{ote}\:{that}\:{we}\:{have}\:\mathrm{2}^{{x}} = \\ $$$$\begin{cases}{\mathrm{1}\:\left({mod}\:\mathrm{3}\right)\:,\:{if}\:{x}\:{is}\:{even}\:}\\{\mathrm{2}\:\:\left({mod}\:\mathrm{3}\right),\:{if}\:{x}\:{is}\:{odd}\:}\end{cases} \\ $$$${Therefore}\:{we}\:{get}\:\underset{{n}\:=\:\mathrm{0}} {\overset{\mathrm{1000}} {\sum}}\lfloor\frac{\mathrm{2}^{{n}} }{\mathrm{3}}\rfloor\:=\:\mathrm{0} \\ $$$$+\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{500}} {\sum}}\left(\lfloor\frac{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }{\mathrm{3}}\rfloor+\lfloor\frac{\mathrm{2}^{\mathrm{2}{n}} }{\mathrm{3}}\rfloor\right)\:=\:\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{500}} {\sum}}\left(\frac{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} −\mathrm{2}}{\mathrm{3}}+\frac{\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}}{\mathrm{3}}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{500}} {\sum}}\left(\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} +\mathrm{2}^{\mathrm{2}{n}} −\mathrm{1}\right) \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\underset{{n}\:=\:\mathrm{1}} {\overset{\mathrm{1000}} {\sum}}\mathrm{2}^{{n}} −\mathrm{500}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{2}^{\mathrm{1001}} −\mathrm{2}\right)−\mathrm{500}\:.\left({JS}\:\circledast\right) \\ $$