Menu Close

1-expicite-f-x-0-1-ln-1-xt-2-1-t-2-dt-with-x-0-2-calculate-0-1-ln-1-t-2-1-t-2-dt-and-0-1-ln-1-2t-2-1-t-2-dt-




Question Number 79627 by mathmax by abdo last updated on 26/Jan/20
1) expicite f(x)=∫_0 ^1  ((ln(1+xt^2 ))/(1+t^2 ))dt with x≥0  2)calculate ∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt and ∫_0 ^1  ((ln(1+2t^2 ))/(1+t^2 ))dt
1)expicitef(x)=01ln(1+xt2)1+t2dtwithx02)calculate01ln(1+t2)1+t2dtand01ln(1+2t2)1+t2dt
Commented by mathmax by abdo last updated on 30/Jan/20
1) we have f^′ (x)=∫_0 ^1 (t^2 /((1+xt^2 )(t^2  +1)))dt  =∫_0 ^1  ((t^2  +1−1)/((t^2  +1)(xt^2  +1)))dt =∫_0 ^1  (dt/(xt^2  +1))−∫_0 ^1  (dt/((t^2  +1)(xt^2  +1)))  ∫_0 ^1  (dt/(xt^2  +1)) =_(t(√x)=u)   ∫_0 ^(√x)   (du/( (√x)(1+u^2 ))) =(1/( (√x))) arctan((√x)) and  let decompose F(t)=(1/((t^2  +1)(xt^2  +1)))  F(t)=((at +b)/(t^2  +1)) +((ct +d)/(xt^2  +1))  we have F(−t)=F(t) ⇒  ((−at +b)/(t^2  +1)) +((−ct +d)/(xt^2  +1)) =F(t) ⇒a=c=0 ⇒F(t) =(b/(t^2  +1)) +(d/(xt^2  +1))  lim_(t→+∞) t^2 F(t)=0=b+(d/x) ⇒d+bx =0 ⇒d =−bx  F(0)=1 =b+d ⇒1=b−bx =(1−x)b ⇒b=(1/(1−x)) and d=((−x)/(1−x)) ⇒  F(t)=(1/((1−x)(t^2  +1))) −(x/((1−x)(xt^2  +1)))   (x≠1) ⇒  ∫_0 ^1  F(t)dt =(1/((1−x))) ∫_0 ^1  (dt/(t^2  +1))−(x/(1−x)) ∫_0 ^1  (dt/(xt^2  +1))  =(π/(4(1−x)))−(x/(1−x))×(1/( (√x))) arctan((√x)) ⇒  f^′ (x)=(1/( (√x))) arctan((√x))−(π/(4(1−x))) +((√x)/(1−x)) arctan((√x))  =((1/( (√x))) +((√x)/(1−x)))arctan((√x)) −(π/(4(1−x)))  =(1/((1−x)(√x))) arctan((√x))−(π/(4(1−x))) ⇒  f(x)=∫_0 ^x  ((arctan((√u)))/((1−u)(√u)))du −(π/4)ln(∣1−x∣) +c  c=f(0)=0 ⇒f(x)=∫_0 ^x  ((arctan((√u)))/((1−u)(√u))) du −(π/4)ln∣1−x∣  (√u)=z ⇒∫_0 ^x  ((arctan((√u)))/((1−u)(√u)))du =∫_0 ^(√x)  ((arctan(z))/((1−z^2 )z))(2z)dz  =2∫_0 ^(√x)   ((arctan(z))/(1−z^2 ))dz ⇒f(x)=2 ∫_0 ^(√x)  ((arctan(z))/(1−z^2 ))dz−(π/4)ln∣1−x∣  (x≠1)
1)wehavef(x)=01t2(1+xt2)(t2+1)dt=01t2+11(t2+1)(xt2+1)dt=01dtxt2+101dt(t2+1)(xt2+1)01dtxt2+1=tx=u0xdux(1+u2)=1xarctan(x)andletdecomposeF(t)=1(t2+1)(xt2+1)F(t)=at+bt2+1+ct+dxt2+1wehaveF(t)=F(t)at+bt2+1+ct+dxt2+1=F(t)a=c=0F(t)=bt2+1+dxt2+1limt+t2F(t)=0=b+dxd+bx=0d=bxF(0)=1=b+d1=bbx=(1x)bb=11xandd=x1xF(t)=1(1x)(t2+1)x(1x)(xt2+1)(x1)01F(t)dt=1(1x)01dtt2+1x1x01dtxt2+1=π4(1x)x1x×1xarctan(x)f(x)=1xarctan(x)π4(1x)+x1xarctan(x)=(1x+x1x)arctan(x)π4(1x)=1(1x)xarctan(x)π4(1x)f(x)=0xarctan(u)(1u)uduπ4ln(1x)+cc=f(0)=0f(x)=0xarctan(u)(1u)uduπ4ln1xu=z0xarctan(u)(1u)udu=0xarctan(z)(1z2)z(2z)dz=20xarctan(z)1z2dzf(x)=20xarctan(z)1z2dzπ4ln1x(x1)
Commented by mathmax by abdo last updated on 30/Jan/20
2)let A =∫_0 ^1  ((ln(1+t^2 ))/(1+t^2 ))dt ⇒ A =∫_0 ^1 ((ln(1+it)+ln(1−it))/(1+t^2 ))dt  =∫_0 ^1  ((ln(1+it))/(1+t^2 )) +conj(∫_0 ^1  ((ln(1+it))/(1+t^2 ))dt)=2Re (∫_0 ^1  ((ln(1+it))/(1+t^2 ))dt)  let f(z)=∫_0 ^1  ((ln(1+zt))/(1+t^2 ))dt  we have f^′ (z)=∫_0 ^1   (t/((1+zt)(t^2  +1)))dt  decomposittion of F(t)=(t/((1+zt)(t^2  +1)))  =(a/(zt +1)) +((bt +c)/(t^2  +1))  a =(zt+1)F(t)∣_(t=−(1/z))   =−(1/(z((1/z^2 )+1))) =−(1/(z(((1+z^2 )/z^2 )))) =−(z/(1+z^2 ))  lim_(t→+∞)  t F(t)=0 =(a/z) +b ⇒b=−(a/z) =(1/(1+z^2 ))  F(0)=0 =a +c ⇒c=−a =(z/(1+z^2 )) ⇒  F(t)=−(z/((1+z^2 )(zt +1))) +(1/(1+z^2 ))×((t+z)/(t^2  +1)) ⇒  f^′ (z)=∫_0 ^1  F(t)dt =−(z/(1+z^2 )) ∫_0 ^1   (dt/(zt +1)) +(1/(2(1+z^2 )))∫_0 ^1  ((2t)/(t^2  +1))dt+(z/(1+z^2 ))∫_0 ^1  (dt/(1+t^2 ))  =−(1/(1+z^2 ))ln(z+1)+(1/(2(1+z^2 )))ln(2)+(z/(1+z^2 ))×(π/4) ⇒  f(z) =−∫_0 ^z  ((ln(1+u))/(u^2  +1)) du+((ln(2))/2)∫_0 ^z  (du/(1+u^2 )) +(π/8) ∫_0 ^z  ((2u)/(1+u^2 ))du +c  =((ln(2))/2) arctan(z)+(π/8)ln(1+z^2 )−∫_0 ^z  ((ln(1+u))/(u^2  +1))du (c=f(0)=0)  f(1)=∫_0 ^1 ((ln(1+t))/(1+t^2 ))dt =((ln(2))/2)×(π/4) +(π/8)ln(2)−∫_0 ^1  ((ln(1+u))/(u^2  +1))du ⇒  2 ∫_0 ^1  ((ln(1+u))/(1+u^2 ))du =(π/4)ln(2)  ⇒∫_0 ^1  ((ln(1+u))/(1+u^2 ))du =(π/8)ln(2)  the explicit form of f(x) dont give f(i)..so let try another way  ....be continued...
2)letA=01ln(1+t2)1+t2dtA=01ln(1+it)+ln(1it)1+t2dt=01ln(1+it)1+t2+conj(01ln(1+it)1+t2dt)=2Re(01ln(1+it)1+t2dt)letf(z)=01ln(1+zt)1+t2dtwehavef(z)=01t(1+zt)(t2+1)dtdecomposittionofF(t)=t(1+zt)(t2+1)=azt+1+bt+ct2+1a=(zt+1)F(t)t=1z=1z(1z2+1)=1z(1+z2z2)=z1+z2limt+tF(t)=0=az+bb=az=11+z2F(0)=0=a+cc=a=z1+z2F(t)=z(1+z2)(zt+1)+11+z2×t+zt2+1f(z)=01F(t)dt=z1+z201dtzt+1+12(1+z2)012tt2+1dt+z1+z201dt1+t2=11+z2ln(z+1)+12(1+z2)ln(2)+z1+z2×π4f(z)=0zln(1+u)u2+1du+ln(2)20zdu1+u2+π80z2u1+u2du+c=ln(2)2arctan(z)+π8ln(1+z2)0zln(1+u)u2+1du(c=f(0)=0)f(1)=01ln(1+t)1+t2dt=ln(2)2×π4+π8ln(2)01ln(1+u)u2+1du201ln(1+u)1+u2du=π4ln(2)01ln(1+u)1+u2du=π8ln(2)theexplicitformoff(x)dontgivef(i)..solettryanotherway.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *