Menu Close

1-explicit-f-a-1-3-arctan-a-x-dx-with-a-gt-0-2-calculate-1-3-arctan-2-x-dx-and-1-3-arctan-3-x-dx-




Question Number 99146 by mathmax by abdo last updated on 18/Jun/20
1) explicit f(a) =∫_1 ^(√3)   arctan((a/x))dx  with a>0  2) calculate ∫_1 ^(√3)  arctan((2/x))dx and ∫_1 ^(√3)   arctan((3/x))dx
1)explicitf(a)=13arctan(ax)dxwitha>02)calculate13arctan(2x)dxand13arctan(3x)dx
Answered by mathmax by abdo last updated on 19/Jun/20
1) f(a) =∫_1 ^(√3)  arctan((a/x))dx by parts we get  f(a) =[xarctan((a/x))]_1 ^(√3)   −∫_1 ^(√3)   x(−(a/x^2 ))×(1/(1+(a^2 /x^2 ))) dx  =(√3)arctan((a/( (√3))))−arctan(a) +∫_1 ^(√3)     ((ax)/(x^2  +a^2 )) dx  but  ∫_1 ^(√3)    ((ax)/(x^2  +a^2 )) dx =_(x=au)    ∫_(1/a) ^((√3)/a)  ((a(au))/(a^2 (1+u^2 ))) adu =a ∫_(1/a) ^((√3)/a)  ((udu)/(1+u^2 ))  =(a/2)[ln(1+u^2 )]_(1/a) ^((√3)/a)  =(a/2){ln(1+(3/a^2 ))−ln(1+(1/a^2 ))} =(a/2)ln(((a^2  +3)/(a^2  +1))) ⇒  f(a) =(√3)arctan((a/( (√3))))−arctan(a)+(a/2)ln(((3+a^2 )/(1+a^2 )))  2)∫_1 ^(√3)  artan((2/x))dx =f(2) =(√3) arctan((2/( (√3))))−arctan(2)+ln((7/5))  ∫_1 ^(√3)  arctan((3/x))dx =f(3) =(√3) arctan((√3))−arctan(3)+(3/2)ln((6/5))
1)f(a)=13arctan(ax)dxbypartswegetf(a)=[xarctan(ax)]1313x(ax2)×11+a2x2dx=3arctan(a3)arctan(a)+13axx2+a2dxbut13axx2+a2dx=x=au1a3aa(au)a2(1+u2)adu=a1a3audu1+u2=a2[ln(1+u2)]1a3a=a2{ln(1+3a2)ln(1+1a2)}=a2ln(a2+3a2+1)f(a)=3arctan(a3)arctan(a)+a2ln(3+a21+a2)2)13artan(2x)dx=f(2)=3arctan(23)arctan(2)+ln(75)13arctan(3x)dx=f(3)=3arctan(3)arctan(3)+32ln(65)

Leave a Reply

Your email address will not be published. Required fields are marked *