Menu Close

1-explicite-f-a-0-t-a-1-lnt-1-t-dt-with-0-lt-a-lt-1-2-calculate-0-lnt-1-t-t-dt-




Question Number 121862 by Bird last updated on 12/Nov/20
1)explicite f(a)=∫_0 ^∞ ((t^(a−1) lnt)/(1+t))dt  with 0<a<1  2)calculate ∫_0 ^∞   ((lnt)/((1+t)(√t)))dt
1)explicitef(a)=0ta1lnt1+tdtwith0<a<12)calculate0lnt(1+t)tdt
Answered by mnjuly1970 last updated on 12/Nov/20
solution:1 :: g(b)=∫_0 ^( ∞) (t^(a+b−1) /(1+t))dt            f(a)=g′(0)            g(b)=Γ(a+b)Γ(1−a−b)=(π/(sin(π(a+b))))              g′(b)=((−π^2 cos(π(a+b)))/(sin^2 (π(a+b))))                g′(0)=((−π^2 cos(πa))/(sin^2 (πa)))=f(a)^         f(a)=−π^2 cot(πa)csc(πa) ...       2::   f((1/2))=0             we know that ::              ∫_0 ^( ∞) ((ln(x))/(1+x^2 ))dx=^(easy) 0
solution:1::g(b)=0ta+b11+tdtf(a)=g(0)g(b)=Γ(a+b)Γ(1ab)=πsin(π(a+b))g(b)=π2cos(π(a+b))sin2(π(a+b))Missing \left or extra \rightf(a)=π2cot(πa)csc(πa)2::f(12)=0weknowthat::0ln(x)1+x2dx=easy0

Leave a Reply

Your email address will not be published. Required fields are marked *