Menu Close

1-factorizse-p-x-x-n-1-inside-C-x-2-find-the-value-of-k-1-n-1-sin-kpi-n-3-find-also-the-value-of-k-0-n-1-sin-kpi-n-




Question Number 28370 by abdo imad last updated on 24/Jan/18
1) factorizse p(x) =x^n  −1  inside C[x]  2) find the value of  Π_(k=1) ^(n−1)  sin(((kπ)/n))  3)find also the value of    Π_(k=0) ^(n−1)   sin(((kπ)/n) +θ).
1)factorizsep(x)=xn1insideC[x]2)findthevalueofk=1n1sin(kπn)3)findalsothevalueofk=0n1sin(kπn+θ).
Commented by abdo imad last updated on 26/Jan/18
1)the roots of p(x) are the complex z_k = e^(i((2kπ)/n))   and k ∈[[0,n−1]]  and p(x)=λ Π_(k=1) ^(n−1)  (x−z_k ) .it s clear that λ=1   2)p(x)= (x−1) Π_(k=1) ^(n−1) ( x− e^(i((2kπ)/n))  )   for x≠1  ((p(x))/(x−1)) = Π_(k=1) ^(n−1)  (x− e^(i ((2kπ)/n)) )   ⇒  lim_(x→1)   ((x^n −1)/(x−1)) = Π_(k=1) ^(n−1)  (1−cos(((2kπ)/n)) −isin(((2kπ)/n)))  ⇒ n= Π_(k=1) ^(n−1) (2 sin^ (((kπ)/n)) −2isin(((kπ)/n))cos(((kπ)/n)))  ⇒n= (−2i)^(n−1)  Π_(k=1) ^(n−1) (sin(((kπ)/n))(e^(i((kπ)/n)) ))  ⇒ n= (−2i)^(n−1) ( Π_(k=1) ^(n−1)  sin(((kπ)/n))) e^(i(π/n)Σ_(k=1) ^(n−1) k)   ⇒n= (−2i)^(n−1)  e^(i(π/n)((n(n−1))/2)) Π_(k=1) ^(n−1)  sin(((kπ)/n))  =(−i)^(n−1)  i^(n−1)   2^(n−1) Π_(k=1) ^(n−1)  sin(((kπ)/n))= 2^(n−1)   Π_(k=1) ^(n−1)  sin(((kπ)/n))  ⇒ Π_(k=1) ^(n−1)  sin(((kπ)/n))= (n/2^(n−1) )  .    (n≥2)   ....be continued.....
1)therootsofp(x)arethecomplexzk=ei2kπnandk[[0,n1]]andp(x)=λk=1n1(xzk).itsclearthatλ=12)p(x)=(x1)k=1n1(xei2kπn)forx1p(x)x1=k=1n1(xei2kπn)limx1xn1x1=k=1n1(1cos(2kπn)isin(2kπn))n=k=1n1(2sin(kπn)2isin(kπn)cos(kπn))n=(2i)n1k=1n1(sin(kπn)(eikπn))n=(2i)n1(k=1n1sin(kπn))eiπnk=1n1kn=(2i)n1eiπnn(n1)2k=1n1sin(kπn)=(i)n1in12n1k=1n1sin(kπn)=2n1k=1n1sin(kπn)k=1n1sin(kπn)=n2n1.(n2).becontinued..

Leave a Reply

Your email address will not be published. Required fields are marked *