1-find-0-pi-4-dx-2-a-sinx-areal-2-c-explicite-0-pi-4-sinx-2-asinx-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 83206 by mathmax by abdo last updated on 28/Feb/20 1)find∫0π4dx2+asinx(areal)2)cexplicite∫0π4sinx(2+asinx)2dx Commented by mathmax by abdo last updated on 29/Feb/20 1)letf(a)=∫0π4dx2+asinxchangementtan(x2)=tgivef(a)=∫02−12dt(1+t2)(2+a2t1+t2)=2∫02−1dt2+2t2+2at=∫02−1dtt2+at+1t2+at+1=0→Δ=a2−4if∣a∣>2⇒Δ>0⇒t1=−a+a2−42andt2=−a−a2−42⇒f(a)=∫02−1dt(t−t1)(t−t2)=1t−t2∫02−1(1t−t1−1t−t2)dt=1a2−4[ln∣t−t1t−t2∣]02−1=1a2−4{ln∣2−1−−a+a2−422−1−−a−a2−42∣−ln∣−a+a2−4−a−a2−4∣}=1a2−4{ln∣22−2+a−a2−422−2+a+a2−4∣−ln∣a−a2−4a+a2−4∣if∣a∣<2⇒Δ<0⇒f(a)=∫02−1dtt2+2at2+a24+1−a24=∫02−1dt(t+a2)2+4−a24=t+a2=4−a22u→u=2t+a4−a244−a2∫a4−a222−2+a4−a211+u2×4−a22du=24−a2[arctanu]a4−a222−2+a4−a2=24−a2{arctan(22−2+a4−a2)−arctan(a4−a2)} Commented by mathmax by abdo last updated on 29/Feb/20 2)wehavef(a)=∫0π4dx2+asinx⇒f′(a)=−∫0π4sinxdx(2+asinx)2⇒∫0π4sinxdx(2+asinx)2=−f′(a)restthecalculusoff′(a)…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: t-1-t-ln-x-dx-Next Next post: Question-17675 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.