Menu Close

1-find-0-pi-4-dx-2-a-sinx-areal-2-c-explicite-0-pi-4-sinx-2-asinx-2-dx-




Question Number 83206 by mathmax by abdo last updated on 28/Feb/20
1) find ∫_0 ^(π/4)  (dx/(2+a sinx))    (areal)  2) c explicite ∫_0 ^(π/4)  ((sinx)/((2+asinx)^2 ))dx
1)find0π4dx2+asinx(areal)2)cexplicite0π4sinx(2+asinx)2dx
Commented by mathmax by abdo last updated on 29/Feb/20
1) let f(a)=∫_0 ^(π/4)  (dx/(2+asinx)) changement tan((x/2))=t give  f(a) =∫_0 ^((√2)−1)    ((2dt)/((1+t^2 )(2+a((2t)/(1+t^2 ))))) =2∫_0 ^((√2)−1)  (dt/(2+2t^2 +2at))  =∫_0 ^((√2)−1)  (dt/(t^2  +at +1))  t^2  +at+1=0→Δ=a^2 −4  if ∣a∣>2 ⇒ Δ>0 ⇒t_1 =((−a+(√(a^2 −4)))/2) and t_2 =((−a−(√(a^2 −4)))/2)  ⇒f(a) =∫_0 ^((√2)−1)  (dt/((t−t_1 )(t−t_2 ))) =(1/(t−t_2 ))∫_0 ^((√2)−1) ((1/(t−t_1 ))−(1/(t−t_2 )))dt  =(1/( (√(a^2 −4)))) [ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^((√2)−1)  =(1/( (√(a^2 −4)))){ln∣(((√2)−1−((−a+(√(a^2 −4)))/2))/( (√2)−1−((−a−(√(a^2 −4)))/2)))∣  −ln∣((−a+(√(a^2 −4)))/(−a−(√(a^2 −4))))∣}=(1/( (√(a^2 −4)))){ln∣((2(√2)−2+a−(√(a^2 −4)))/(2(√2)−2+a+(√(a^2 −4))))∣  −ln∣((a−(√(a^2 −4)))/(a+(√(a^2 −4))))∣  if ∣a∣<2 ⇒Δ<0 ⇒f(a)=∫_0 ^((√2)−1)  (dt/(t^2  +((2at)/2) +(a^2 /4)+1−(a^2 /4)))  =∫_0 ^((√2)−1)  (dt/((t+(a/2))^2  +((4−a^2 )/4))) =_(t+(a/2)=((√(4−a^2 ))/2)u→u=((2t+a)/( (√(4−a^2 ))))) (4/(4−a^2 ))   ∫_(a/( (√(4−a^2 )))) ^((2(√2)−2+a)/( (√(4−a^2 ))))    (1/(1+u^2 ))×((√(4−a^2 ))/2)du  =(2/( (√(4−a^2 ))))[arctanu]_(a/( (√(4−a^2 )))) ^((2(√2)−2+a)/( (√(4−a^2 ))))    =(2/( (√(4−a^2 )))){ arctan(((2(√2)−2+a)/( (√(4−a^2 )))))  −arctan((a/( (√(4−a^2 )))))}
1)letf(a)=0π4dx2+asinxchangementtan(x2)=tgivef(a)=0212dt(1+t2)(2+a2t1+t2)=2021dt2+2t2+2at=021dtt2+at+1t2+at+1=0Δ=a24ifa∣>2Δ>0t1=a+a242andt2=aa242f(a)=021dt(tt1)(tt2)=1tt2021(1tt11tt2)dt=1a24[lntt1tt2]021=1a24{ln21a+a24221aa242lna+a24aa24}=1a24{ln222+aa24222+a+a24lnaa24a+a24ifa∣<2Δ<0f(a)=021dtt2+2at2+a24+1a24=021dt(t+a2)2+4a24=t+a2=4a22uu=2t+a4a244a2a4a2222+a4a211+u2×4a22du=24a2[arctanu]a4a2222+a4a2=24a2{arctan(222+a4a2)arctan(a4a2)}
Commented by mathmax by abdo last updated on 29/Feb/20
2)we have f(a)=∫_0 ^(π/4) (dx/(2+asinx)) ⇒f^′ (a)=−∫_0 ^(π/4)  ((sinx dx)/((2+asinx)^2 )) ⇒  ∫_0 ^(π/4)  ((sinx dx)/((2+asinx)^2 )) =−f^′ (a)  rest the calculus of f^′ (a)...be continued...
2)wehavef(a)=0π4dx2+asinxf(a)=0π4sinxdx(2+asinx)20π4sinxdx(2+asinx)2=f(a)restthecalculusoff(a)becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *