1-find-1-dx-x-2-i-and-1-dx-x-2-i-i-1-2-find-the-value-of-1-dx-x-4-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 96373 by mathmax by abdo last updated on 01/Jun/20 1.find∫1+∞dxx2−iand∫1+∞dxx2+i(i=−1)2.findthevalueof∫1+∞dxx4+1 Answered by Sourav mridha last updated on 01/Jun/20 letI=∫1+∞dxx2−iandJ=∫1+∞dxx2+inow,I+J=∫1+∞2x2x4+1dx…..(i)=∫1+∞x2+1x4+1dx+∫1∞x2−1x4+1dx……..(I1)……….(I2)=∫1+∞d(x−1x)(x−1x)2+(2)2+∫1+∞d(x+1x)(x+1x)2−(2)2=12[tan−1(x−1x2)]1+∞+122[ln(x+1x−2x+1x+2)]1+∞=π22−122ln(3−2)nowI−J=12i∫1+∞dxx4+1……(ii)=14i[∫1+∞x2+1x4+1dx−∫1+∞x2−1x4+1dx]=14i[I1−I2]=−i4[π22+122ln(3−2)]now(i)+(ii)I=[π42−142ln(3−2)]−i[π162+1162ln(3−2)]and(i)−(ii)J=I∗=complexconjugateofI.nowfrom(ii)…∫1+∞dxx4+1=2i(I−J)=[π42+142ln(3−2)].veryniceproblem…it′sreallyinteresting. Commented by abdomathmax last updated on 01/Jun/20 thankssir Answered by abdomathmax last updated on 01/Jun/20 1.∫1+∞dxx2−i=∫1+∞dx(x−i)(x+i)=12i∫1+∞(1x−i−1x+i)dx=12i[ln(x−ix+i)]1+∞=12i(−ln(1−i1+i))=12i(ln(1+i)−ln(1−i))but1+i=1+eiπ4=1+12+i2=(1+12)2+12×eiarctan(12(1+12)=32+2+12eiarctan(11+2)=2+2eiarctan(11+2)⇒ln(1+i)=12ln(2+2)+iarctan(11+2)ln(1−i)=conj(..)=12ln(2+2)−iarctan(11+2)⇒12i(ln(1+i)−ln(1−i))=12i{2iarctan(11+2)}=iarctan(2−1)=i(π8)=π8eiπ4∫1+∞dxx2+i=conj(∫1+∞dxx2−i)=π8e−iπ42.∫1+∞dxx4+1=∫1+∞dx(x2−i)(x2+i)=12i∫1+∞(1x2−i−1x2+i)dx=12i(π8eiπ4−π8e−iπ4)=π8sin(π4)=π8×22=π216 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-1-2-cos-pi-20-1-2-cos-3pi-20-1-2-cos-9pi-20-1-2-cos-27pi-20-2-tan-pi-30-tan-7pi-30-tan-11pi-30-Next Next post: Question-30840 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.