Menu Close

1-find-1-dx-x-2-i-and-1-dx-x-2-i-i-1-2-find-the-value-of-1-dx-x-4-1-




Question Number 96373 by mathmax by abdo last updated on 01/Jun/20
1. find ∫_1 ^(+∞)  (dx/(x^2 −i))  and ∫_1 ^(+∞)  (dx/(x^2  +i))    (i=(√(−1)))  2. find the value of  ∫_1 ^(+∞)  (dx/(x^4  +1))
1.find1+dxx2iand1+dxx2+i(i=1)2.findthevalueof1+dxx4+1
Answered by Sourav mridha last updated on 01/Jun/20
let I=∫_1 ^(+∞) (dx/(x^2 −i)) and J=∫_1 ^(+∞) (dx/(x^2 +i))   now, I+J=∫_1 ^(+∞) ((2x^2 )/(x^4 +1))dx.....(i)      =∫_1 ^(+∞) ((x^2 +1)/(x^4 +1))dx +∫_1 ^∞ ((x^2 −1)/(x^4 +1))dx            ........(I_1 )           ..........(I_2 )  =∫_(1 ) ^(+∞) ((d(x−(1/x)))/((x−(1/x))^2 +((√2))^2 )) +∫_1 ^(+∞) ((d(x+(1/x)))/((x+(1/x))^2 −((√2))^2 ))  =(1/( (√2)))[tan^(−1) (((x−(1/x))/( (√2))))]_1 ^(+∞) +(1/(2(√2)))[ln(((x+(1/x) −(√2))/(x+(1/x)+(√2))))]_1 ^(+∞)   =(𝛑/(2(√2)))−(1/(2(√2)))ln(3−(√2))  now I−J=(1/(2i))∫_1 ^(+∞) (dx/(x^4 +1)) ......(ii)   =(1/(4i))[∫_1 ^(+∞) ((x^2 +1)/(x^4 +1))dx−∫_1 ^(+∞) ((x^2 −1)/(x^4 +1))dx]  =(1/(4i))[I_1 −I_2 ]=−(i/4)[(𝛑/(2(√2)))+(1/(2(√2)))ln(3−(√2))]  now (i)+(ii)  I=[(𝛑/(4(√2)))−(1/(4(√2)))ln(3−(√2))]−i[(𝛑/(16(√2)))+(1/(16(√2)))ln(3−(√2))]  and (i)−(ii)  J=I^∗ =complex conjugate of I.  now from (ii)...    ∫_1 ^(+∞) (dx/(x^4 +1))=2i(I−J)                       =[(𝛑/(4(√2)))+(1/(4(√2)))ln(3−(√2))].  very nice problem...it′s really  interesting.
letI=1+dxx2iandJ=1+dxx2+inow,I+J=1+2x2x4+1dx..(i)=1+x2+1x4+1dx+1x21x4+1dx..(I1).(I2)=1+d(x1x)(x1x)2+(2)2+1+d(x+1x)(x+1x)2(2)2=12[tan1(x1x2)]1++122[ln(x+1x2x+1x+2)]1+=π22122ln(32)nowIJ=12i1+dxx4+1(ii)=14i[1+x2+1x4+1dx1+x21x4+1dx]=14i[I1I2]=i4[π22+122ln(32)]now(i)+(ii)I=[π42142ln(32)]i[π162+1162ln(32)]and(i)(ii)J=I=complexconjugateofI.nowfrom(ii)1+dxx4+1=2i(IJ)=[π42+142ln(32)].veryniceproblemitsreallyinteresting.
Commented by abdomathmax last updated on 01/Jun/20
thanks sir
thankssir
Answered by abdomathmax last updated on 01/Jun/20
1. ∫_1 ^(+∞)  (dx/(x^2 −i)) =∫_1 ^(+∞)  (dx/((x−(√i))(x+(√i))))  =(1/(2(√i)))∫_1 ^(+∞)  ((1/(x−(√i)))−(1/(x+(√i))))dx  =(1/(2(√i)))[ln(((x−(√i))/(x+(√i))))]_1 ^(+∞)  =(1/(2(√i)))(−ln(((1−(√i))/(1+(√i)))))  =(1/(2(√i)))( ln(1+(√i))−ln(1−(√i)))  but  1+(√i)=1+e^((iπ)/4)  =1+(1/( (√2)))+(i/( (√2))) =(√((1+(1/( (√2))))^2 +(1/2)))×  e^(iarctan((1/( (√2)(1+(1/( (√2)))))))  =(√((3/2)+(√2)+(1/2)))e^(iarctan((1/(1+(√2)))))   =(√(2+(√2))) e^(iarctan((1/(1+(√2)))))  ⇒  ln(1+(√i))=(1/2)ln(2+(√2))+iarctan((1/(1+(√2))))  ln(1−(√i)) =conj(..)=(1/2)ln(2+(√2))−iarctan((1/(1+(√2))))  ⇒(1/(2(√i)))(ln(1+(√i))−ln(1−(√i)))  =(1/(2(√i))){2i arctan((1/(1+(√2))))} =(√i)arctan((√2)−1)  =(√i)((π/8)) =(π/8)e^((iπ)/4)   ∫_1 ^(+∞)   (dx/(x^2 +i)) =conj(∫_1 ^(+∞)  (dx/(x^2 −i))) =(π/8)e^(−((iπ)/4))   2.∫_1 ^(+∞)  (dx/(x^4  +1)) =∫_1 ^(+∞)  (dx/((x^2 −i)(x^2  +i)))  =(1/(2i))∫_1 ^(+∞)  ((1/(x^2 −i))−(1/(x^2  +i)))dx  =(1/(2i))((π/8)e^((iπ)/4) −(π/8)e^(−((iπ)/4)) )   =(π/8)sin((π/4)) =(π/8)×((√2)/2) =((π(√2))/(16))
1.1+dxx2i=1+dx(xi)(x+i)=12i1+(1xi1x+i)dx=12i[ln(xix+i)]1+=12i(ln(1i1+i))=12i(ln(1+i)ln(1i))but1+i=1+eiπ4=1+12+i2=(1+12)2+12×eiarctan(12(1+12)=32+2+12eiarctan(11+2)=2+2eiarctan(11+2)ln(1+i)=12ln(2+2)+iarctan(11+2)ln(1i)=conj(..)=12ln(2+2)iarctan(11+2)12i(ln(1+i)ln(1i))=12i{2iarctan(11+2)}=iarctan(21)=i(π8)=π8eiπ41+dxx2+i=conj(1+dxx2i)=π8eiπ42.1+dxx4+1=1+dx(x2i)(x2+i)=12i1+(1x2i1x2+i)dx=12i(π8eiπ4π8eiπ4)=π8sin(π4)=π8×22=π216

Leave a Reply

Your email address will not be published. Required fields are marked *