Menu Close

1-find-1-t-2-dt-2-calculate-1-3-1-t-2-dt-




Question Number 35044 by math khazana by abdo last updated on 14/May/18
1)find ∫ (√(1+t^2 )) dt  2) calculate  ∫_1 ^(√3)  (√(1+t^2 ))  dt
1)find1+t2dt2)calculate131+t2dt
Commented by math khazana by abdo last updated on 15/May/18
let put I = ∫(√(1+t^2 )) dt  changement t =shx give  I = ∫ chx chxdx =∫ ch^2 xdx   =∫ ((1+ch(2x))/2)dx = (x/2)  +(1/4)sh(2x)  = (x/2)  + (1/2)shx chx = ((argsh(t))/2) +(1/2)t(√(1+t^2 ))  =(1/2)ln(t +(√(1+t^2 )) ) +(1/2)t(√(1+t^2 ))  +c  2) ∫_1 ^(√3)  (√(1+t^2 )) dt =[(1/2)ln(t+(√(1+t^2 )) ) +(1/2)t(√(1+t^2 )) ]_1 ^(√3)   =(1/2){ ln( 2+(√3)) +((√3)/2) .2 −ln(1+(√2)) −(√2) }  =(1/2){ ln(2+(√3)) −ln(1+(√2)) +(√3) −(√2) }
letputI=1+t2dtchangementt=shxgiveI=chxchxdx=ch2xdx=1+ch(2x)2dx=x2+14sh(2x)=x2+12shxchx=argsh(t)2+12t1+t2=12ln(t+1+t2)+12t1+t2+c2)131+t2dt=[12ln(t+1+t2)+12t1+t2]13=12{ln(2+3)+32.2ln(1+2)2}=12{ln(2+3)ln(1+2)+32}
Answered by MJS last updated on 14/May/18
∫(√(1+t^2 ))dt=            [t=tan(u) → dt=sec^2 (u)du]  =∫sec^2 (u)(√(1+tan^2 (u)))du=  =∫sec^3 (u)du=            [∫sec^n (u)du=((sec^(n−2) (u)tan(u))/(n−1))+((n−2)/(n−1))∫sec^(n−2) (u)du]  =((sec(u)tan(u))/2)+(1/2)∫sec(u)du=  =((sec(u)tan(u))/2)+(1/2)∫sec(u)((tan(u)+sec(u))/(tan(u)+sec(u)))du=  =((sec(u)tan(u))/2)+(1/2)∫((tan(u)sec(u)+sec^2 (u))/(tan(u)+sec(u)))du=            [v=tan(u)+sec(u) → du=(dv/(tan(u)sec(u)+sec^2 (u)))]  =((sec(u)tan(u))/2)+(1/2)∫(1/v)dv=  =((sec(u)tan(u))/2)+((ln(v))/2)+C=  =((sec(u)tan(u))/2)+((ln∣tan(u)+sec(u)∣)/2)+C=  =((sec(arctan(t))tan(arcran(t)))/2)+((ln∣tan(arctan(t))+sec(arctan(t))∣)/2)+C=  =((t(√(1+t^2 )))/2)+((ln∣t+(√(1+t^2 ))∣)/2)+C    ∫_1 ^(√3) (√(1+t^2 ))dt=[((t(√(1+t^2 )))/2)+((ln∣t+(√(1+t^2 ))∣)/2)]_1 ^(√3) =  =(√3)+((ln(2+(√3)))/2)−(((√2)/2)+((ln(1+(√2)))/2))=  =(√3)−((√2)/2)+(1/2)ln(((2+(√3))/(1+(√2))))=(√3)−((√2)/2)+(1/2)ln((√6)−(√3)+2(√2)−2)≈  ≈1.242736
1+t2dt=[t=tan(u)dt=sec2(u)du]=sec2(u)1+tan2(u)du==sec3(u)du=[secn(u)du=secn2(u)tan(u)n1+n2n1secn2(u)du]=sec(u)tan(u)2+12sec(u)du==sec(u)tan(u)2+12sec(u)tan(u)+sec(u)tan(u)+sec(u)du==sec(u)tan(u)2+12tan(u)sec(u)+sec2(u)tan(u)+sec(u)du=[v=tan(u)+sec(u)du=dvtan(u)sec(u)+sec2(u)]=sec(u)tan(u)2+121vdv==sec(u)tan(u)2+ln(v)2+C==sec(u)tan(u)2+lntan(u)+sec(u)2+C==sec(arctan(t))tan(arcran(t))2+lntan(arctan(t))+sec(arctan(t))2+C==t1+t22+lnt+1+t22+C311+t2dt=[t1+t22+lnt+1+t22]13==3+ln(2+3)2(22+ln(1+2)2)==322+12ln(2+31+2)=322+12ln(63+222)1.242736
Commented by math khazana by abdo last updated on 15/May/18
correct answer thanks sir Mjs
correctanswerthankssirMjs

Leave a Reply

Your email address will not be published. Required fields are marked *