Question Number 35044 by math khazana by abdo last updated on 14/May/18
$$\left.\mathrm{1}\right){find}\:\int\:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:{dt} \\ $$
Commented by math khazana by abdo last updated on 15/May/18
$${let}\:{put}\:{I}\:=\:\int\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:\:{changement}\:{t}\:={shx}\:{give} \\ $$$${I}\:=\:\int\:{chx}\:{chxdx}\:=\int\:{ch}^{\mathrm{2}} {xdx}\: \\ $$$$=\int\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{x}\right)}{\mathrm{2}}{dx}\:=\:\frac{{x}}{\mathrm{2}}\:\:+\frac{\mathrm{1}}{\mathrm{4}}{sh}\left(\mathrm{2}{x}\right) \\ $$$$=\:\frac{{x}}{\mathrm{2}}\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}{shx}\:{chx}\:=\:\frac{{argsh}\left({t}\right)}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{2}}{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}\:+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\:+{c} \\ $$$$\left.\mathrm{2}\right)\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \:\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}\:=\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\right)\:+\frac{\mathrm{1}}{\mathrm{2}}{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:\right]_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left(\:\mathrm{2}+\sqrt{\mathrm{3}}\right)\:+\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:.\mathrm{2}\:−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:−\sqrt{\mathrm{2}}\:\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\:{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:−{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:+\sqrt{\mathrm{3}}\:−\sqrt{\mathrm{2}}\:\right\} \\ $$
Answered by MJS last updated on 14/May/18
$$\int\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{t}=\mathrm{tan}\left({u}\right)\:\rightarrow\:{dt}=\mathrm{sec}^{\mathrm{2}} \left({u}\right){du}\right] \\ $$$$=\int\mathrm{sec}^{\mathrm{2}} \left({u}\right)\sqrt{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \left({u}\right)}{du}= \\ $$$$=\int\mathrm{sec}^{\mathrm{3}} \left({u}\right){du}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\int\mathrm{sec}^{{n}} \left({u}\right){du}=\frac{\mathrm{sec}^{{n}−\mathrm{2}} \left({u}\right)\mathrm{tan}\left({u}\right)}{{n}−\mathrm{1}}+\frac{{n}−\mathrm{2}}{{n}−\mathrm{1}}\int\mathrm{sec}^{{n}−\mathrm{2}} \left({u}\right){du}\right] \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sec}\left({u}\right){du}= \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sec}\left({u}\right)\frac{\mathrm{tan}\left({u}\right)+\mathrm{sec}\left({u}\right)}{\mathrm{tan}\left({u}\right)+\mathrm{sec}\left({u}\right)}{du}= \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{tan}\left({u}\right)\mathrm{sec}\left({u}\right)+\mathrm{sec}^{\mathrm{2}} \left({u}\right)}{\mathrm{tan}\left({u}\right)+\mathrm{sec}\left({u}\right)}{du}= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{v}=\mathrm{tan}\left({u}\right)+\mathrm{sec}\left({u}\right)\:\rightarrow\:{du}=\frac{{dv}}{\mathrm{tan}\left({u}\right)\mathrm{sec}\left({u}\right)+\mathrm{sec}^{\mathrm{2}} \left({u}\right)}\right] \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{\mathrm{1}}{{v}}{dv}= \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{ln}\left({v}\right)}{\mathrm{2}}+{C}= \\ $$$$=\frac{\mathrm{sec}\left({u}\right)\mathrm{tan}\left({u}\right)}{\mathrm{2}}+\frac{\mathrm{ln}\mid\mathrm{tan}\left({u}\right)+\mathrm{sec}\left({u}\right)\mid}{\mathrm{2}}+{C}= \\ $$$$=\frac{\mathrm{sec}\left(\mathrm{arctan}\left({t}\right)\right)\mathrm{tan}\left(\mathrm{arcran}\left({t}\right)\right)}{\mathrm{2}}+\frac{\mathrm{ln}\mid\mathrm{tan}\left(\mathrm{arctan}\left({t}\right)\right)+\mathrm{sec}\left(\mathrm{arctan}\left({t}\right)\right)\mid}{\mathrm{2}}+{C}= \\ $$$$=\frac{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{ln}\mid{t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\mid}{\mathrm{2}}+{C} \\ $$$$ \\ $$$$\underset{\mathrm{1}} {\overset{\sqrt{\mathrm{3}}} {\int}}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }{dt}=\left[\frac{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}{\mathrm{2}}+\frac{\mathrm{ln}\mid{t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\mid}{\mathrm{2}}\right]_{\mathrm{1}} ^{\sqrt{\mathrm{3}}} = \\ $$$$=\sqrt{\mathrm{3}}+\frac{\mathrm{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)}{\mathrm{2}}−\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}{\mathrm{2}}\right)= \\ $$$$=\sqrt{\mathrm{3}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\frac{\mathrm{2}+\sqrt{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{2}}}\right)=\sqrt{\mathrm{3}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left(\sqrt{\mathrm{6}}−\sqrt{\mathrm{3}}+\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{2}\right)\approx \\ $$$$\approx\mathrm{1}.\mathrm{242736} \\ $$
Commented by math khazana by abdo last updated on 15/May/18
$${correct}\:{answer}\:{thanks}\:{sir}\:{Mjs} \\ $$