1-find-1-t-2-dt-2-calculate-1-3-1-t-2-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35044 by math khazana by abdo last updated on 14/May/18 1)find∫1+t2dt2)calculate∫131+t2dt Commented by math khazana by abdo last updated on 15/May/18 letputI=∫1+t2dtchangementt=shxgiveI=∫chxchxdx=∫ch2xdx=∫1+ch(2x)2dx=x2+14sh(2x)=x2+12shxchx=argsh(t)2+12t1+t2=12ln(t+1+t2)+12t1+t2+c2)∫131+t2dt=[12ln(t+1+t2)+12t1+t2]13=12{ln(2+3)+32.2−ln(1+2)−2}=12{ln(2+3)−ln(1+2)+3−2} Answered by MJS last updated on 14/May/18 ∫1+t2dt=[t=tan(u)→dt=sec2(u)du]=∫sec2(u)1+tan2(u)du==∫sec3(u)du=[∫secn(u)du=secn−2(u)tan(u)n−1+n−2n−1∫secn−2(u)du]=sec(u)tan(u)2+12∫sec(u)du==sec(u)tan(u)2+12∫sec(u)tan(u)+sec(u)tan(u)+sec(u)du==sec(u)tan(u)2+12∫tan(u)sec(u)+sec2(u)tan(u)+sec(u)du=[v=tan(u)+sec(u)→du=dvtan(u)sec(u)+sec2(u)]=sec(u)tan(u)2+12∫1vdv==sec(u)tan(u)2+ln(v)2+C==sec(u)tan(u)2+ln∣tan(u)+sec(u)∣2+C==sec(arctan(t))tan(arcran(t))2+ln∣tan(arctan(t))+sec(arctan(t))∣2+C==t1+t22+ln∣t+1+t2∣2+C∫311+t2dt=[t1+t22+ln∣t+1+t2∣2]13==3+ln(2+3)2−(22+ln(1+2)2)==3−22+12ln(2+31+2)=3−22+12ln(6−3+22−2)≈≈1.242736 Commented by math khazana by abdo last updated on 15/May/18 correctanswerthankssirMjs Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-1-1-Next Next post: find-f-x-0-arctan-xt-1-t-2-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.