Menu Close

1-find-2-ln-x-dx-2-prove-i-1-i-resl-number-




Question Number 87833 by M±th+et£s last updated on 06/Apr/20
1)find ∫2^(ln(x))  dx  2)prove (i)^(1/i)  = resl number
1)find2ln(x)dx2)proveii=reslnumber
Commented by mr W last updated on 06/Apr/20
2)  i=e^((iπ)/2)   (i)^(1/i) =i^(1/i) =(e^((iπ)/2) )^(1/i) =e^(π/2) =(√e^π )=real
2)i=eiπ2ii=i1i=(eiπ2)1i=eπ2=eπ=real
Commented by john santu last updated on 06/Apr/20
1) by parts  u = 2^(ln x)  ⇒ du = 2^(ln x) .((ln 2)/x) dx   I = x.2^(ln x) −ln2 ∫2^(ln x)  dx    (1+ln2)I = x.2^(ln x)    I = ((x.2^(ln x) )/(ln (2e))) + c
1)bypartsu=2lnxdu=2lnx.ln2xdxI=x.2lnxln22lnxdx(1+ln2)I=x.2lnxI=x.2lnxln(2e)+c
Commented by M±th+et£s last updated on 06/Apr/20
thank you
thankyou
Commented by M±th+et£s last updated on 06/Apr/20
tank you
tankyou
Commented by mathmax by abdo last updated on 06/Apr/20
2)^i (√i)=i^(1/i)  =i^(−i)  =(e^((iπ)/2) )^(−i)  =e^(π/2)   and e^(π/2)  ∈ R
2)ii=i1i=ii=(eiπ2)i=eπ2andeπ2R
Answered by petrochengula last updated on 06/Apr/20
∫2^(lnx) dx  e^(ln2) =2 then 2^(lnx) =(e^(ln2) )^(lnx) =(2^(lnx) )^(ln2) =x^(ln2)   ∫2^(lnx) dx=∫x^(ln2) dx=(x^(ln2+1) /(ln2+1))+C
2lnxdxeln2=2then2lnx=(eln2)lnx=(2lnx)ln2=xln22lnxdx=xln2dx=xln2+1ln2+1+C

Leave a Reply

Your email address will not be published. Required fields are marked *