Menu Close

1-find-a-and-b-wich-verify-0-pi-at-2-bt-cos-nx-1-n-2-2-find-the-value-of-n-1-1-n-2-




Question Number 82286 by mathmax by abdo last updated on 19/Feb/20
1) find a and b wich verify  ∫_0 ^π (at^2  +bt)cos(nx) =(1/n^2 )  2) find the value of Σ_(n=1) ^∞  (1/n^2 )
1)findaandbwichverify0π(at2+bt)cos(nx)=1n22)findthevalueofn=11n2
Commented by john santu last updated on 22/Feb/20
(2)sin x = x−(x^3 /(3!)) + (x^5 /(5!)) −...  (3) ((sin x)/x) = Π_(n = 1) ^∞  (1−(x^2 /(n^2 π^2 )))= (1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))...  (2) = (3)   1−(x^2 /(3!)) + (x^4 /(5!)) − (x^6 /(7!))+... = (1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))...  coefficient term of x^2  must be same  −(1/(3!)) = −((1/π^2 )+(1/(4π^2 ))+(1/(9π^2 ))+...)  −(1/6) = −(1/π^2 ) Σ_(n = 1) ^∞   (1/n^2 )  therefore Σ_(n = 1) ^∞  (1/n^2 ) = (π^2 /6) .
(2)sinx=xx33!+x55!(3)sinxx=n=1(1x2n2π2)=(1x2π2)(1x24π2)(2)=(3)1x23!+x45!x67!+=(1x2π2)(1x24π2)coefficienttermofx2mustbesame13!=(1π2+14π2+19π2+)16=1π2n=11n2thereforen=11n2=π26.
Commented by mathmax by abdo last updated on 20/Feb/20
sir john can you prove the second line its not clear...
sirjohncanyouprovethesecondlineitsnotclear
Commented by mind is power last updated on 20/Feb/20
nice But i think 1&2 are related quation
niceButithink1&2arerelatedquation
Answered by mind is power last updated on 20/Feb/20
∫_0 ^π t^2 cos(nt)dt  =−2∫_0 ^π ((tsin(nt))/n)dt  =(2/n)[((tcos(nt))/n)]_0 ^π =((2π(−1)^n )/n^2 )  ∫tcos(nt)dt=−∫_0 ^π ((sin(nt))/n)dt=(([cos(nt)]_0 ^π )/n^2 )=(((−1)^n −1)/n^2 )  ⇒∫_0 ^π (at^2 +bt)cos(nt)dt=(((−1)^n )/n^2 )(2πa+b)−(b/n^2 )=(1/n^2 )  ⇒ { ((−b=1)),((2πa+b=0)) :}⇒b=−1,a=(1/(2π))  2)  let f(t)=(t^2 /(2π))−t  2π periodic  odd f(x)=f(−x)paire  f∈C_0 ]−π,π[  serie of fourier of f is  S_n (f)=a_0 +Σ_(n≥1) a_n (f)cos(nx)  a_0 =(1/(2π))∫_(−π) ^π f(x)dx=(1/π)∫_0 ^π ((x^2 /(2π))−x)dx  =(π/6)−(π/2)=−(π/3)  a_k =(1/π)∫_(−π) ^π f(x)cos(kx)dx=(2/π)∫_0 ^π f(x)cos(kx)dx by one  a_k =(2/π)(1/k^2 )  S_n (f)(x)=−(π/3)+Σ_(n≥1) ((2cos(kx))/k^2 )  by direchlet f(0)=S_n (f)(0)⇒  0=−(π/3)+(2/π)Σ_(k≥1) ((cos(k.0))/k^2 )⇒  (π/3)=(2/π)Σ_(k≥1) (1/k^2 )⇒Σ_(k≥1) (1/k^2 )=(π^2 /6)
0πt2cos(nt)dt=20πtsin(nt)ndt=2n[tcos(nt)n]0π=2π(1)nn2tcos(nt)dt=0πsin(nt)ndt=[cos(nt)]0πn2=(1)n1n20π(at2+bt)cos(nt)dt=(1)nn2(2πa+b)bn2=1n2{b=12πa+b=0b=1,a=12π2)letf(t)=t22πt2πperiodicoddf(x)=f(x)pairefC0]π,π[serieoffourieroffisSn(f)=a0+n1an(f)cos(nx)a0=12πππf(x)dx=1π0π(x22πx)dx=π6π2=π3ak=1πππf(x)cos(kx)dx=2π0πf(x)cos(kx)dxbyoneak=2π1k2Sn(f)(x)=π3+n12cos(kx)k2bydirechletf(0)=Sn(f)(0)0=π3+2πk1cos(k.0)k2π3=2πk11k2k11k2=π26
Commented by mathmax by abdo last updated on 20/Feb/20
thanks sir.
thankssir.
Commented by mind is power last updated on 21/Feb/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *