Menu Close

1-Find-all-natural-pairs-of-integers-x-y-such-that-x-3-y-3-xy-61-2-Find-gcd-x-4-x-3-x-3-x-




Question Number 104100 by bramlex last updated on 19/Jul/20
(1)Find all natural pairs of  integers (x,y) such that x^3 −y^3 =xy+61.  (2)Find gcd(x^4 −x^3 , x^3 −x)
(1)Findallnaturalpairsofintegers(x,y)suchthatx3y3=xy+61.(2)Findgcd(x4x3,x3x)
Answered by bemath last updated on 19/Jul/20
(2)x^4 −x^3  = x^3 (x−1)=x^2 .x(x−1)         x^3 −x = x(x^2 −1)=x(x−1)(x+1)  so gcd(x^4 −x^3 , x^3 −x)=  x(x−1) or x^2 −x ★
(2)x4x3=x3(x1)=x2.x(x1)x3x=x(x21)=x(x1)(x+1)sogcd(x4x3,x3x)=x(x1)orx2x
Answered by john santu last updated on 19/Jul/20
(1) x^3 −y^3  = (x−y)(x^2 +xy+y^2 )  ⇔(x−y)(x^2 +xy+y^2 )= xy+61  notice that x>y . therefore we  have to consider x^2 +xy+y^2 ≤  xy+61 or x^2 +y^2  ≤ 61.  because x>y , we have   61 ≥ x^2 +y^2  ≥2y^2  ⇒ y ∈{1,2,3,4,5}   { ((y=1; x^3 −x−62=0)),((y=2; x^3 −2x−69=0)),((y=3; x^3 −3x−89=0)),((y=4; x^3 −4x−125=0)),((y=5; x^3 −5x−186=0; x=6)) :}  we see the only working value  for x is when x=6 ,y=5 ; so the  only natural pairs of solution  is (x,y) = (6,5) (JS ⊛)
(1)x3y3=(xy)(x2+xy+y2)(xy)(x2+xy+y2)=xy+61noticethatx>y.thereforewehavetoconsiderx2+xy+y2xy+61orx2+y261.becausex>y,wehave61x2+y22y2y{1,2,3,4,5}{y=1;x3x62=0y=2;x32x69=0y=3;x33x89=0y=4;x34x125=0y=5;x35x186=0;x=6weseetheonlyworkingvalueforxiswhenx=6,y=5;sotheonlynaturalpairsofsolutionis(x,y)=(6,5)(JS)
Commented by bramlex last updated on 19/Jul/20
thank you
thankyou
Answered by floor(10²Eta[1]) last updated on 19/Jul/20
(2)gcd(x^4 −x^3 ,x^3 −x)=gcd(x^3 (x−1),(x−1)x(x+1))  =x(x−1).gcd(x^2 ,x+1)★  d=gcd(x^2 ,x+1)⇒d∣x^2 ∧d∣x+1  ⇒d∣(−1).x^2 +x(x+1)=x  ⇒gcd(x^2 ,x+1)=gcd(x,x+1)=1  gcd(x^4 −x^3 , x^3 −x)=  ★x(x−1)
(2)gcd(x4x3,x3x)=gcd(x3(x1),(x1)x(x+1))=x(x1).gcd(x2,x+1)d=gcd(x2,x+1)dx2dx+1d(1).x2+x(x+1)=xgcd(x2,x+1)=gcd(x,x+1)=1gcd(x4x3,x3x)=x(x1)

Leave a Reply

Your email address will not be published. Required fields are marked *