Menu Close

1-find-dx-x-1-x-2-2-calculate-0-1-dx-x-1-x-2-




Question Number 64418 by turbo msup by abdo last updated on 17/Jul/19
1)find ∫   (dx/(x+(√(1+x^2 ))))  2) calculate ∫_0 ^1   (dx/(x+(√(1+x^2 ))))
1)finddxx+1+x22)calculate01dxx+1+x2
Commented by Prithwish sen last updated on 17/Jul/19
a)∫((√(x^2 +1))−x)dx =   (x/2)(√(x^2 +1))+(1/2)ln∣x+(√(x^2 +1)) ∣ −(x^2 /2) +C  b) ((x/2)(√(x^2 +1)) + (1/2)ln∣x+(√(x^2 +1))∣−(x^2 /2) )_0 ^1   = ((1/( (√2))) +(1/2)ln∣1+(√2)∣−(1/2))
a)(x2+1x)dx=x2x2+1+12lnx+x2+1x22+Cb)(x2x2+1+12lnx+x2+1x22)01=(12+12ln1+212)
Commented by mathmax by abdo last updated on 18/Jul/19
1) let   I =∫  (dx/(x+(√(1+x^2 )))) ⇒ I =∫ ((x−(√(1+x^2 )))/(x^2 −1−x^2 ))dx  = ∫ (√(1+x^2 ))dx−∫ xdx =−(x^2 /2) +∫ (√(1+x^2 ))dx +c  changement x =sh(t) give  ∫(√(1+x^2 ))dx =∫ ch(t)cht dt =∫ ch^2 t dt =∫ ((1+ch(2t))/2)dt  =(t/2) +(1/4)sh(2t) =(t/2) +(1/2)sh(t)ch(t)=(t/2) +(1/2)x(√(1+x^2 ))  =(1/2)argsh(x) +((x(√(1+x^2 )))/2) =(1/2)ln(x+(√(1+x^2 ))) +((x(√(1+x^2 )))/2) ⇒  I =(1/2)ln(x+(√(1+x^2 )))+((x(√(1+x^2 )))/2) −(x^2 /2) +c .
1)letI=dxx+1+x2I=x1+x2x21x2dx=1+x2dxxdx=x22+1+x2dx+cchangementx=sh(t)give1+x2dx=ch(t)chtdt=ch2tdt=1+ch(2t)2dt=t2+14sh(2t)=t2+12sh(t)ch(t)=t2+12x1+x2=12argsh(x)+x1+x22=12ln(x+1+x2)+x1+x22I=12ln(x+1+x2)+x1+x22x22+c.
Commented by mathmax by abdo last updated on 18/Jul/19
2) ∫_0 ^1   (dx/(x+(√(1+x^2 )))) =(1/2)[ln(x+(√(1+x^2 ))) +x(√(1+x^2 )) −x^2 ]_0 ^1   =(1/2){ln(1+(√2))+(√2)−1}
2)01dxx+1+x2=12[ln(x+1+x2)+x1+x2x2]01=12{ln(1+2)+21}

Leave a Reply

Your email address will not be published. Required fields are marked *