1-find-dx-x-1-x-2-2-calculate-0-1-dx-x-1-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 64419 by turbo msup by abdo last updated on 17/Jul/19 1)find∫dxx−1−x22)calculate∫01dxx−1−x2 Commented by mathmax by abdo last updated on 18/Jul/19 1)letA=∫dxx−1−x2changementx=sinθgiveA=∫cosθsinθ−cosθdθ=∫cosθcosθ(tanθ−1)dθ=∫dθtanθ−1=tanθ=t∫dt(1+t2)(t−1)letdecomposeF(t)=1(t−1)(t2+1)⇒F(t)=at−1+bt+ct2+1a=limt→1(t−1)F(t)=12limt→+∞tF(t)=0=a+b⇒b=−12⇒F(t)=12(t−1)+−12t+ct2+1F(0)=−1=−12+c⇒c=−12⇒F(t)=12(t−1)−12t+1t2+1⇒A=12∫dtt−1−12∫t+1t2+1dt+c=12ln∣t−1∣−14ln(t2+1)−12arctan(t)+cwehavet=tanθandθ=arcsinx⇒A=12ln∣tan(arcsinx)−1∣−14ln(1+tan2(arcsinx))−12arcsinx+c Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-129955Next Next post: Question-64425 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.