Menu Close

1-find-dx-x-1-x-2-2-calculate-0-1-dx-x-1-x-2-




Question Number 64419 by turbo msup by abdo last updated on 17/Jul/19
1) find ∫  (dx/(x−(√(1−x^2 ))))  2) calculate  ∫_0 ^1   (dx/(x−(√(1−x^2 ))))
1)finddxx1x22)calculate01dxx1x2
Commented by mathmax by abdo last updated on 18/Jul/19
1) let A =∫    (dx/(x−(√(1−x^2 ))))  changement x =sinθ give  A =∫   ((cosθ)/(sinθ −cosθ))dθ  =∫  ((cosθ)/(cosθ(tanθ −1)))dθ  =∫   (dθ/(tanθ −1))  =_(tanθ =t)      ∫  (dt/((1+t^2 )(t−1)))  let decompose  F(t) =(1/((t−1)(t^2  +1))) ⇒F(t)=(a/(t−1)) +((bt +c)/(t^2  +1))  a =lim_(t→1) (t−1)F(t) =(1/2)  lim_(t→+∞) tF(t) =0 =a+b ⇒b=−(1/2) ⇒F(t)=(1/(2(t−1))) +((−(1/2)t +c)/(t^2  +1))  F(0) =−1 =−(1/2) +c ⇒c=−(1/2) ⇒F(t)=(1/(2(t−1))) −(1/2) ((t+1)/(t^2  +1)) ⇒  A =(1/2) ∫  (dt/(t−1)) −(1/2) ∫  ((t+1)/(t^2  +1))dt +c  =(1/2)ln∣t−1∣−(1/4)ln(t^2  +1)−(1/2) arctan(t) +c  we have  t=tanθ and θ =arcsinx ⇒  A =(1/2)ln∣tan(arcsinx)−1∣−(1/4)ln(1+tan^2 (arcsinx))−(1/2)arcsinx +c
1)letA=dxx1x2changementx=sinθgiveA=cosθsinθcosθdθ=cosθcosθ(tanθ1)dθ=dθtanθ1=tanθ=tdt(1+t2)(t1)letdecomposeF(t)=1(t1)(t2+1)F(t)=at1+bt+ct2+1a=limt1(t1)F(t)=12limt+tF(t)=0=a+bb=12F(t)=12(t1)+12t+ct2+1F(0)=1=12+cc=12F(t)=12(t1)12t+1t2+1A=12dtt112t+1t2+1dt+c=12lnt114ln(t2+1)12arctan(t)+cwehavet=tanθandθ=arcsinxA=12lntan(arcsinx)114ln(1+tan2(arcsinx))12arcsinx+c

Leave a Reply

Your email address will not be published. Required fields are marked *