Question Number 83085 by mathmax by abdo last updated on 27/Feb/20
$$\left.\mathrm{1}\right)\:{find}\:\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} } \\ $$
Commented by abdomathmax last updated on 28/Feb/20
$$\left.\mathrm{2}\right)\:{let}\:{I}=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} }{dx}\:\Rightarrow\mathrm{2}{I}=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} } \\ $$$${let}\:{W}\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }\:\Rightarrow{W}\left({z}\right)=\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{4}} \left({z}+{i}\right)^{\mathrm{4}} } \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left({W},{i}\right) \\ $$$${Res}\left({W},{i}\right)={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{1}}{\left(\mathrm{4}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{4}} {W}\left({z}\right)\right\}^{\left(\mathrm{3}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\mathrm{6}}\left\{\left({z}+{i}\right)^{−\mathrm{4}} \right\}^{\left(\mathrm{3}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{−\mathrm{2}}{\mathrm{3}}\left\{\left({z}+{i}\right)^{−\mathrm{5}} \right\}^{\left(\mathrm{2}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\frac{\mathrm{10}}{\mathrm{3}}\left\{\left({z}+{i}\right)^{−\mathrm{6}} \right\}^{\left.\right)\left.\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\left(−\mathrm{20}\right)\left({z}+{i}\right)^{−\mathrm{7}} \\ $$$$=\frac{−\mathrm{20}}{\left(\mathrm{2}{i}\right)^{\mathrm{7}} }\:=\frac{−\mathrm{20}}{\mathrm{2}^{\mathrm{7}} ×{i}^{\mathrm{8}−\mathrm{1}} }\:=\frac{−\mathrm{20}{i}}{\mathrm{2}^{\mathrm{7}} }\:=\frac{−\mathrm{20}{i}}{\mathrm{2}^{\mathrm{5}} ×\mathrm{4}}\:=\frac{−\mathrm{20}{i}}{\mathrm{32}×\mathrm{4}} \\ $$$$=−\frac{\mathrm{4}×\mathrm{5}{i}}{\mathrm{32}×\mathrm{4}}\:=−\frac{\mathrm{5}{i}}{\mathrm{32}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi×\left(\frac{\left.−\mathrm{5}{i}\right)}{\mathrm{32}}\right) \\ $$$$=\frac{\mathrm{5}\pi}{\mathrm{16}}\:=\mathrm{2}{I}\:\Rightarrow\:{I}\:=\frac{\mathrm{5}\pi}{\mathrm{32}} \\ $$
Commented by mathmax by abdo last updated on 28/Feb/20
$$\left.\mathrm{1}\right){complex}\:{method}\:{let}\:{A}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{4}} }\:\Rightarrow{A}\:=\int\:\:\frac{{dx}}{\left({x}−{i}\right)^{\mathrm{4}} \left({x}+{i}\right)^{\mathrm{4}} } \\ $$$$=\int\:\:\:\frac{{dx}}{\left(\frac{{x}−{i}}{{x}+{i}}\right)^{\mathrm{4}} \left({x}+{i}\right)^{\mathrm{8}} }\:{let}\:{use}\:{the}\:{changement}\:\frac{{x}−{i}}{{x}+{i}}={t}\:\Rightarrow \\ $$$${x}−{i}={xt}+{it}\:\Rightarrow\left(\mathrm{1}−{t}\right){x}={i}\left(\mathrm{1}+{t}\right)\:\Rightarrow{x}={i}\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\:\Rightarrow{dx}={i}\frac{\mathrm{1}−{t}+\left(\mathrm{1}+{t}\right)}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }{dt} \\ $$$$=\frac{\mathrm{2}{i}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt}\:\:{also}\:\:{x}+{i}\:=\frac{{i}+{it}}{\mathrm{1}−{t}}+{i}\:=\frac{{i}+{it}+{i}−{it}}{\mathrm{1}−{t}}\:=\frac{\mathrm{2}{i}}{\mathrm{1}−{t}}\:\Rightarrow \\ $$$${A}\:=\int\:\:\:\frac{\mathrm{2}{idt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} ×{t}^{\mathrm{4}} ×\left(\frac{\mathrm{2}{i}}{{t}−\mathrm{1}}\right)^{\mathrm{8}} }\:=\frac{\mathrm{1}}{\left(\mathrm{2}{i}\right)^{\mathrm{7}} }\int\:\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{8}} \:{dt}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} {t}^{\mathrm{4}} } \\ $$$$=\frac{{i}}{\mathrm{2}^{\mathrm{7}} }\int\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{6}} }{{t}^{\mathrm{4}} }{dt}\:=\frac{{i}}{\mathrm{2}^{\mathrm{7}} }\int\:\:\frac{\sum_{{k}=\mathrm{0}} ^{\mathrm{6}} \:{C}_{\mathrm{6}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} \:{t}^{{k}} }{{t}^{\mathrm{4}} }{dt} \\ $$$$=\frac{{i}}{\mathrm{2}^{\mathrm{7}} }\int\:\sum_{{k}=\mathrm{0}} ^{\mathrm{6}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{6}} ^{{k}} \:{t}^{{k}−\mathrm{4}} \:{dt} \\ $$$$=\frac{{i}}{\mathrm{2}^{\mathrm{7}} }\left\{\sum_{{k}=\mathrm{0}\:{andk}\neq\mathrm{3}} ^{\mathrm{6}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{6}} ^{{k}} \:×\frac{\mathrm{1}}{{k}−\mathrm{3}}{t}^{{k}−\mathrm{3}} \:−{C}_{\mathrm{6}} ^{\mathrm{3}} \:{ln}\left({t}\right)\right\}+{C} \\ $$$$\Rightarrow{A}\:=\frac{{i}}{\mathrm{2}^{\mathrm{7}} }\left\{\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{3}} ^{\mathrm{6}} \frac{\left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{6}} ^{{k}} }{{k}−\mathrm{3}}\:\left(\frac{{x}−{i}}{{x}+{i}}\right)^{{k}−\mathrm{3}} \:−{C}_{\mathrm{6}} ^{\mathrm{3}} {ln}\left(\frac{{x}−{i}}{{x}+{i}}\right)\right\}\:+{C} \\ $$
Answered by mind is power last updated on 27/Feb/20
$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{a}\right)}={f}\left({a}\right) \\ $$$${x}=\sqrt{{a}}\:{u}\Rightarrow\int\frac{\sqrt{{a}}{du}}{{a}\left(\mathrm{1}+{u}^{\mathrm{2}} \right)}=\frac{{arctan}\left({u}\right)}{\:\sqrt{{a}}}+{c} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} +{a}}=\frac{{arctan}\left(\frac{{x}}{\:\sqrt{{a}}}\right)}{\:\sqrt{{a}}}+{c}={f}\left({a}\right) \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{a}\right)^{\mathrm{4}} }=−\frac{{f}^{\mathrm{4}} \left({a}\right)}{\mathrm{6}} \\ $$