1-find-dx-x-2-1-4-2-calculate-0-dx-x-2-1-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 83085 by mathmax by abdo last updated on 27/Feb/20 1)find∫dx(x2+1)42)calculate∫0∞dx(x2+1)4 Commented by abdomathmax last updated on 28/Feb/20 2)letI=∫0∞dx(x2+1)4dx⇒2I=∫−∞+∞dx(x2+1)4letW(z)=1(z2+1)4⇒W(z)=1(z−i)4(z+i)4∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(4−1)!{(z−i)4W(z)}(3)=limz→i16{(z+i)−4}(3)=limz→i−23{(z+i)−5}(2)=limz→i103{(z+i)−6})1)=limz→i(−20)(z+i)−7=−20(2i)7=−2027×i8−1=−20i27=−20i25×4=−20i32×4=−4×5i32×4=−5i32⇒∫−∞+∞W(z)dz=2iπ×(−5i)32)=5π16=2I⇒I=5π32 Commented by mathmax by abdo last updated on 28/Feb/20 1)complexmethodletA=∫dx(x2+1)4⇒A=∫dx(x−i)4(x+i)4=∫dx(x−ix+i)4(x+i)8letusethechangementx−ix+i=t⇒x−i=xt+it⇒(1−t)x=i(1+t)⇒x=i1+t1−t⇒dx=i1−t+(1+t)(1−t)2dt=2i(t−1)2dtalsox+i=i+it1−t+i=i+it+i−it1−t=2i1−t⇒A=∫2idt(t−1)2×t4×(2it−1)8=1(2i)7∫(t−1)8dt(t−1)2t4=i27∫(t−1)6t4dt=i27∫∑k=06C6k(−1)ktkt4dt=i27∫∑k=06(−1)kC6ktk−4dt=i27{∑k=0andk≠36(−1)kC6k×1k−3tk−3−C63ln(t)}+C⇒A=i27{∑k=0andk≠36(−1)kC6kk−3(x−ix+i)k−3−C63ln(x−ix+i)}+C Answered by mind is power last updated on 27/Feb/20 ∫dx(x2+a)=f(a)x=au⇒∫adua(1+u2)=arctan(u)a+c∫dxx2+a=arctan(xa)a+c=f(a)∫dx(x2+a)4=−f4(a)6 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: prove-that-a-n-n-1-defined-by-a-n-1-2-1-6-1-n-n-1-is-cauchy-sequence-Next Next post: consider-the-following-pdf-of-a-random-variable-X-f-x-i-0-x-2-i-i-0-otherwise-x-gt-0-find-the-variance-X- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.