Menu Close

1-find-dx-x-2-1-4-2-calculate-0-dx-x-2-1-4-




Question Number 83085 by mathmax by abdo last updated on 27/Feb/20
1) find ∫  (dx/((x^2  +1)^4 ))  2)calculate ∫_0 ^∞    (dx/((x^2 +1)^4 ))
1)finddx(x2+1)42)calculate0dx(x2+1)4
Commented by abdomathmax last updated on 28/Feb/20
2) let I=∫_0 ^∞   (dx/((x^2  +1)^4 ))dx ⇒2I=∫_(−∞) ^(+∞)  (dx/((x^2  +1)^4 ))  let W(z)=(1/((z^2 +1)^4 )) ⇒W(z)=(1/((z−i)^4 (z+i)^4 ))  ∫_(−∞) ^(+∞)  W(z)dz =2iπ Res(W,i)  Res(W,i)=lim_(z→i)   (1/((4−1)!)){(z−i)^4 W(z)}^((3))   =lim_(z→i)    (1/6){(z+i)^(−4) }^((3))   =lim_(z→i)   ((−2)/3){(z+i)^(−5) }^((2))   =lim_(z→i)   ((10)/3){(z+i)^(−6) }^()1))   =lim_(z→i)   (−20)(z+i)^(−7)   =((−20)/((2i)^7 )) =((−20)/(2^7 ×i^(8−1) )) =((−20i)/2^7 ) =((−20i)/(2^5 ×4)) =((−20i)/(32×4))  =−((4×5i)/(32×4)) =−((5i)/(32)) ⇒∫_(−∞) ^(+∞)  W(z)dz =2iπ×(((−5i))/(32)))  =((5π)/(16)) =2I ⇒ I =((5π)/(32))
2)letI=0dx(x2+1)4dx2I=+dx(x2+1)4letW(z)=1(z2+1)4W(z)=1(zi)4(z+i)4+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(41)!{(zi)4W(z)}(3)=limzi16{(z+i)4}(3)=limzi23{(z+i)5}(2)=limzi103{(z+i)6})1)=limzi(20)(z+i)7=20(2i)7=2027×i81=20i27=20i25×4=20i32×4=4×5i32×4=5i32+W(z)dz=2iπ×(5i)32)=5π16=2II=5π32
Commented by mathmax by abdo last updated on 28/Feb/20
1)complex method let A =∫  (dx/((x^2  +1)^4 )) ⇒A =∫  (dx/((x−i)^4 (x+i)^4 ))  =∫   (dx/((((x−i)/(x+i)))^4 (x+i)^8 )) let use the changement ((x−i)/(x+i))=t ⇒  x−i=xt+it ⇒(1−t)x=i(1+t) ⇒x=i((1+t)/(1−t)) ⇒dx=i((1−t+(1+t))/((1−t)^2 ))dt  =((2i)/((t−1)^2 ))dt  also  x+i =((i+it)/(1−t))+i =((i+it+i−it)/(1−t)) =((2i)/(1−t)) ⇒  A =∫   ((2idt)/((t−1)^2 ×t^4 ×(((2i)/(t−1)))^8 )) =(1/((2i)^7 ))∫   (((t−1)^8  dt)/((t−1)^2 t^4 ))  =(i/2^7 )∫  (((t−1)^6 )/t^4 )dt =(i/2^7 )∫  ((Σ_(k=0) ^6  C_6 ^k (−1)^k  t^k )/t^4 )dt  =(i/2^7 )∫ Σ_(k=0) ^6 (−1)^k  C_6 ^k  t^(k−4)  dt  =(i/2^7 ){Σ_(k=0 andk≠3) ^6 (−1)^k  C_6 ^k  ×(1/(k−3))t^(k−3)  −C_6 ^3  ln(t)}+C  ⇒A =(i/2^7 ){Σ_(k=0 and k≠3) ^6 (((−1)^k  C_6 ^k )/(k−3)) (((x−i)/(x+i)))^(k−3)  −C_6 ^3 ln(((x−i)/(x+i)))} +C
1)complexmethodletA=dx(x2+1)4A=dx(xi)4(x+i)4=dx(xix+i)4(x+i)8letusethechangementxix+i=txi=xt+it(1t)x=i(1+t)x=i1+t1tdx=i1t+(1+t)(1t)2dt=2i(t1)2dtalsox+i=i+it1t+i=i+it+iit1t=2i1tA=2idt(t1)2×t4×(2it1)8=1(2i)7(t1)8dt(t1)2t4=i27(t1)6t4dt=i27k=06C6k(1)ktkt4dt=i27k=06(1)kC6ktk4dt=i27{k=0andk36(1)kC6k×1k3tk3C63ln(t)}+CA=i27{k=0andk36(1)kC6kk3(xix+i)k3C63ln(xix+i)}+C
Answered by mind is power last updated on 27/Feb/20
∫(dx/((x^2 +a)))=f(a)  x=(√a) u⇒∫(((√a)du)/(a(1+u^2 )))=((arctan(u))/( (√a)))+c  ∫(dx/(x^2 +a))=((arctan((x/( (√a)))))/( (√a)))+c=f(a)  ∫(dx/((x^2 +a)^4 ))=−((f^4 (a))/6)
dx(x2+a)=f(a)x=auadua(1+u2)=arctan(u)a+cdxx2+a=arctan(xa)a+c=f(a)dx(x2+a)4=f4(a)6

Leave a Reply

Your email address will not be published. Required fields are marked *