Question Number 82970 by mathmax by abdo last updated on 26/Feb/20
$$\left.\mathrm{1}\right){find}\:\int\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{9}} } \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{9}} } \\ $$
Commented by mathmax by abdo last updated on 26/Feb/20
$$\left.\mathrm{1}\right){let}\:{I}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{9}} }\:\Rightarrow{I}\:=\int\:\:\frac{{dx}}{\left({x}−\mathrm{1}\right)^{\mathrm{9}} \left({x}+\mathrm{1}\right)^{\mathrm{9}} }\:=\int\:\:\frac{{dx}}{\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{\mathrm{9}} \left({x}+\mathrm{1}\right)^{\mathrm{18}} } \\ $$$${changement}\:\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\:={t}\:{give}\:{x}−\mathrm{1}={tx}+{t}\:\Rightarrow\left(\mathrm{1}−{t}\right){x}={t}+\mathrm{1}\:\Rightarrow{x}=\frac{{t}+\mathrm{1}}{\mathrm{1}−{t}} \\ $$$${dx}\:=\frac{\mathrm{1}−{t}+\left({t}+\mathrm{1}\right)}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }{dt}\:=\frac{\mathrm{2}}{\left(\mathrm{1}−{t}\right)^{\mathrm{2}} }{dt}\:{and}\:{x}+\mathrm{1}=\frac{{t}+\mathrm{1}}{\mathrm{1}−{t}}+\mathrm{1}\:=\frac{{t}+\mathrm{1}+\mathrm{1}−{t}}{\mathrm{1}−{t}}=\frac{\mathrm{2}}{\mathrm{1}−{t}} \\ $$$${I}\:=\int\:\:\frac{\mathrm{2}}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} .{t}^{\mathrm{9}} .\left(\frac{\mathrm{2}}{\mathrm{1}−{t}}\right)^{\mathrm{18}} }{dt}\:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\int\:\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{18}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} {t}^{\mathrm{9}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\int\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{16}} }{{t}^{\mathrm{9}} }{dt}\:\:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\int\:\:\frac{\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \:{C}_{\mathrm{16}} ^{{k}} \:{t}^{{k}} \left(−\mathrm{1}\right)^{\mathrm{16}−{k}} }{{t}^{\mathrm{9}} }{dt} \\ $$$$\mathrm{2}^{\mathrm{17}} \:{I}\:=\sum_{{k}=\mathrm{0}} ^{\mathrm{16}} \left(−\mathrm{1}\right)^{{k}} {C}_{\mathrm{16}} ^{{k}} \:\int\:\:{t}^{{k}−\mathrm{9}} \:{dt} \\ $$$$=\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{16}} ^{{k}} \:×\frac{\mathrm{1}}{{k}−\mathrm{8}}{t}^{{k}−\mathrm{8}} \:+{C}_{\mathrm{16}} ^{\mathrm{8}} \:{ln}\mid{t}\mid\:+{C} \\ $$$$=\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \:\left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{{k}−\mathrm{8}} \:+{C}_{\mathrm{16}} ^{\mathrm{8}} {ln}\mid\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\mid\:+{C}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\left\{\:\sum_{{k}=\mathrm{0}{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{{k}−\mathrm{8}} \:+{C}_{\mathrm{16}} ^{\mathrm{8}} {ln}\mid\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\mid\right\}\:+{C} \\ $$
Commented by mathmax by abdo last updated on 26/Feb/20
$$\left.\mathrm{2}\right)\:\int_{\mathrm{2}} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{9}} }=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\left[\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \left(\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\right)^{{k}−\mathrm{8}} \:+{C}_{\mathrm{16}} ^{\mathrm{8}} {ln}\mid\frac{{x}−\mathrm{1}}{{x}+\mathrm{1}}\mid\right]_{\mathrm{2}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\left\{\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \:−\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{{k}−\mathrm{8}} \right. \\ $$$$\left.−{C}_{\mathrm{16}} ^{\mathrm{8}} {ln}\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{17}} }\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{8}} ^{\mathrm{16}} \frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{8}}{C}_{\mathrm{16}} ^{{k}} \left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{{k}−\mathrm{8}} }\right)+\frac{{C}_{\mathrm{16}} ^{\mathrm{8}} }{\mathrm{2}^{\mathrm{17}} }{ln}\left(\mathrm{3}\right) \\ $$