Menu Close

1-find-dx-x-2-5-x-3-9-2-calculate-4-dx-x-2-5-x-3-9-




Question Number 81719 by mathmax by abdo last updated on 14/Feb/20
1) find ∫   (dx/((x+2)^5 (x−3)^9 ))    2) calculate ∫_4 ^(+∞)  (dx/((x+2)^5 (x−3)^9 ))
1)finddx(x+2)5(x3)92)calculate4+dx(x+2)5(x3)9
Commented by mathmax by abdo last updated on 15/Feb/20
let A =∫  (dx/((x+2)^5 (x−3)^9 )) ⇒A =∫  (dx/((((x+2)/(x−3)))^5 (x−3)^(14) ))  we use the changement ((x+2)/(x−3)) =t ⇒x+2=tx−3t ⇒(1−t)x=−2−3t  ⇒(t−1)x=3t+2 ⇒x=((3t+2)/(t−1)) ⇒x−3=((3t+2)/(t−1))−3 =((3t+2−3t+3)/(t−1))  =(5/(t−1)) ⇒dx =((−5)/((t−1)^2 ))dt ⇒  A = ∫  ((−5)/((t−1)^2  t^5 ((5/(t−1)))^(14) ))dt =((−5)/5^(14) ) ∫  (((t−1)^(14) )/((t−1)^2  t^5 ))dt  =−(1/5^(13) ) ∫  (((t−1)^(12) )/t^5 )dt  =−(1/5^(13) ) ∫ ((Σ_(k=0) ^(12) C_(12) ^k  t^k (−1)^(12−k) )/t^5 )dt  =−(1/5^(13) ) ∫  ((C_(12) ^0  −C_(12) ^1 t+C_(12) ^2  t^2 −C_(12) ^3  t^3 +C_(12) ^4  t^4  −C_(12) ^5  t^5  +C_(12) ^6  t^6  −C_(12) ^7  t^7 +C_(12) ^8 t^8  −C_(12) ^9  t^9  +C_(12) ^(10)  t^(10)  −C_(12) ^(11)  t^(11) +C_(12) ^(12)  t^(12) )/t^5 )dt   =−(1/5^(13) ) ∫((( C_(12) ^0 )/t^5 ) −(C_(12) ^1 /t^4 ) +(C_(12) ^2 /t^3 )−(C_(12) ^3 /t^2 ) +(C_(12) ^4 /t)−C_(12) ^5  +C_(12) ^6  t −C_(12) ^7  t^2 +C_(12) ^8  t^3 −C_(12) ^9  t^4  +C_(12) ^(10)  t^5  −C_(12) ^(11)  t^6  +C_(12) ^(12)  t^7 )dt  (−5^(13) )A =−(C_(12) ^0 /(4t^4 ))+(C_(12) ^1 /(3t^3 )) −(C_(12) ^2 /(2t^2 )) +(C_(12) ^3 /t)+C_(12) ^4 ln∣t∣−C_(12) ^5  t+(C_(12) ^6 /2)t^2 −(C_(12) ^7 /3)t^3  +(C_(12) ^8 /4)t^4  −(C_(12) ^9 /5)t^5  +(C_(12) ^(10) /6)t^6  −(C_(12) ^(11) /7)t^7 + (C_(12) ^(12) /8)t^8  +C  (−5^(13) )A =−(1/4) C_(12) ^0  (((x−3)/(x+2)))^4  +(1/3)C_(12) ^1 (((x−3)/(x+2)))^3  −(1/2)C_(12) ^2 (((x−3)/(x+2)))^2  +C_(12) ^3 (((x−3)/(x+2)))  C_(12) ^4 ln∣((x+2)/(x−3))∣−C_(12) ^5 (((x+2)/(x−3)))+(1/2)C_(12) ^6 (((x+2)/(x−3)))^2 −(1/3)C_(12) ^7 (((x+2)/(x−3)))^3  +(1/4)C_(12) ^8 (((x+2)/(x−3)))^4   −(1/5) C_(12) ^9  (((x+2)/(x−3)))^5 +(1/6) C_(12) ^(10)  (((x+2)/(x−3)))^6  −(1/7) C_(12) ^(11)  (((x+2)/(x−3)))^7  +(1/8) C_(12) ^(12)  (((x+2)/(x−3)))^8  +C  so the value of integral A is known
letA=dx(x+2)5(x3)9A=dx(x+2x3)5(x3)14weusethechangementx+2x3=tx+2=tx3t(1t)x=23t(t1)x=3t+2x=3t+2t1x3=3t+2t13=3t+23t+3t1=5t1dx=5(t1)2dtA=5(t1)2t5(5t1)14dt=5514(t1)14(t1)2t5dt=1513(t1)12t5dt=1513k=012C12ktk(1)12kt5dt=1513C120C121t+C122t2C123t3+C124t4C125t5+C126t6C127t7+C128t8C129t9+C1210t10C1211t11+C1212t12t5dt=1513(C120t5C121t4+C122t3C123t2+C124tC125+C126tC127t2+C128t3C129t4+C1210t5C1211t6+C1212t7)dt(513)A=C1204t4+C1213t3C1222t2+C123t+C124lntC125t+C1262t2C1273t3+C1284t4C1295t5+C12106t6C12117t7+C12128t8+C(513)A=14C120(x3x+2)4+13C121(x3x+2)312C122(x3x+2)2+C123(x3x+2)C124lnx+2x3C125(x+2x3)+12C126(x+2x3)213C127(x+2x3)3+14C128(x+2x3)415C129(x+2x3)5+16C1210(x+2x3)617C1211(x+2x3)7+18C1212(x+2x3)8+CsothevalueofintegralAisknown

Leave a Reply

Your email address will not be published. Required fields are marked *