Menu Close

1-find-dx-x-2-x-1-6-2-calculate-dx-x-2-x-1-6-




Question Number 82971 by mathmax by abdo last updated on 26/Feb/20
1)find ∫   (dx/((x^2 +x+1)^6 ))  2)calculate ∫_(−∞) ^(+∞)  (dx/((x^2 +x+1)^6 ))
1)finddx(x2+x+1)62)calculate+dx(x2+x+1)6
Commented by mathmax by abdo last updated on 26/Feb/20
2) let A =∫_(−∞) ^(+∞)  (dx/((x^2  +x+1)^6 )) ⇒ A =∫_(−∞) ^(+∞)  (dx/(((x+(1/2))^2  +(3/4))^6 ))  =_(x+(1/2)=((√3)/2)t) ((4/3))^6   ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^6 ))  let  also changement  t=tanθ give ∫_(−∞) ^(+∞)  (dt/((t^2  +1)^6 )) =∫_(−(π/2)) ^(π/2)  (((1+tan^2 θ)dθ)/((1+tan^2 θ)^6 ))  =∫_(−(π/2)) ^(π/2)  (dθ/((1+tan^2 θ)^4 )) =∫_(−(π/2)) ^(π/2) cos^8 t dt =2 ∫_0 ^(π/2) (((1+cos(2t))/2))^4  dt  =(1/8)∫_0 ^(π/2) (1+2cos(2t) +cos^2 (2t))^2  dt  =(1/8)∫_0 ^(π/2) {  (1+2cos(2t))^2  +2(1+2cos(2t)cos^2 (2t) +cos^4 (2t))dt  =(1/8)∫_0 ^(π/2) {1+4cos(2t) +4cos^2 (2t) +2cos^2 (2t)+4cos^3 (2t)+cos^4 (2t)}dt  =(π/(16)) +(1/2)∫_0 ^(π/2)  cos(2t)+(3/4)∫_0 ^(π/2)  cos^2 (2t)dt+(1/2)∫_0 ^(π/2)  cos^3 (2t)dt+(1/8)∫_0 ^(π/2)  cos^4 (2t)dt  ∫_0 ^(π/2)  cos(2t)dt =(1/2)sin(2t)]_0 ^(π/2) =0  ∫_0 ^(π/2)  cos^2 (2t)dt =(1/2)∫_0 ^(π/2) (1+cos(4t))dt  =(π/4) +(1/8)[sin(4t)]_0 ^(π/2)  =(π/4)  ∫_0 ^(π/2)  cos^3 (2t)dt =∫_0 ^(π/2) (((1+cos(4t))/2))cos(2t)dt  =(1/2)∫_0 ^(π/2) {cos(2t)+cos(2t)cos(4t)}dt  =(1/2)∫_0 ^(π/2) cos(2t)dt  +(1/4)∫_0 ^(π/2) (cos(2t)+cos(6t))dt=0  ∫_0 ^(π/2)  cos^4 t dt =∫_0 ^(π/2) (((1+cos(2t))/2))^2  dt  =(1/4)∫_0 ^(π/2) (1+2cos(2t) +cos^2 (2t))dt  =(π/8) +(1/2)∫_0 ^(π/2)  cos(2t)dt +(1/8)∫_0 ^(π/2) (1+cos(4t))dt  =(π/8) +0+(π/(16)) =((3π)/(16))  the value of  I is known
2)letA=+dx(x2+x+1)6A=+dx((x+12)2+34)6=x+12=32t(43)6+dt(t2+1)6letalsochangementt=tanθgive+dt(t2+1)6=π2π2(1+tan2θ)dθ(1+tan2θ)6=π2π2dθ(1+tan2θ)4=π2π2cos8tdt=20π2(1+cos(2t)2)4dt=180π2(1+2cos(2t)+cos2(2t))2dt=180π2{(1+2cos(2t))2+2(1+2cos(2t)cos2(2t)+cos4(2t))dt=180π2{1+4cos(2t)+4cos2(2t)+2cos2(2t)+4cos3(2t)+cos4(2t)}dt=π16+120π2cos(2t)+340π2cos2(2t)dt+120π2cos3(2t)dt+180π2cos4(2t)dt0π2cos(2t)dt=12sin(2t)]0π2=00π2cos2(2t)dt=120π2(1+cos(4t))dt=π4+18[sin(4t)]0π2=π40π2cos3(2t)dt=0π2(1+cos(4t)2)cos(2t)dt=120π2{cos(2t)+cos(2t)cos(4t)}dt=120π2cos(2t)dt+140π2(cos(2t)+cos(6t))dt=00π2cos4tdt=0π2(1+cos(2t)2)2dt=140π2(1+2cos(2t)+cos2(2t))dt=π8+120π2cos(2t)dt+180π2(1+cos(4t))dt=π8+0+π16=3π16thevalueofIisknown
Commented by abdomathmax last updated on 26/Feb/20
1) complex method  let A =∫  (dx/((x^2  +x+1)^6 ))  x^2  +x+1 =0→Δ=1−4=−3 ⇒  z_1 =((−1+i(√3))/2) =e^((i2π)/(3 ))    and z_2   =((−1−i(√3))/2)=e^(−((i2π)/3))   A =∫    (dx/((x−z_1 )^6 (x−z_2 )^6 )) =∫    (dx/((((x−z_1 )/(x−z_2 )))^6 (x−z_2 )^(12) ))  changement ((x−z_1 )/(x−z_2 )) =t give x−z_1 =tx−tz_2  ⇒  (1−t)x =z_1 −tz_2  ⇒x =((tz_2 −z_1 )/(t−1)) ⇒  dx =((z_2 (t−1)−(z_2 t−z_1 ))/((t−1)^2 ))dt =((z_1 −z_2 )/((t−1)^2 )) dt and  x−z_2 =((z_2 t−z_1 )/(t−1))−z_2 =((z_2 t−z_1 −z_2 t+z_2 )/(t−1))  =((z_2 −z_1 )/((t−1))) ⇒A =∫  ((z_1 −z_2 )/((t−1)^2  t^6 (((z_2 −z_1 )/(t−1)))^(12) ))dt  =−(1/((z_2 −z_1 )^(11) )) ∫   (((t−1)^(12) )/((t−1)^2 t^6 ))dt  =((−1)/((z_2 −z_1 )^(11) ))∫  (((t−1)^(10) )/t^6 )dt  (z_1 −z_2 )^(11) ×A =∫  ((Σ_(k=0) ^(10)  C_(10) ^k (−1)^k  t^k )/t^6 )dt  =∫  Σ_(k=0) ^(10) (−1)^k  C_(10) ^k  t^(k−6)  dt  =Σ_(k=0 and k≠5) ^(10)  (((−1)^k )/(k−5))C_(10) ^k  t^(k−5)  −C_(10) ^5  lnt +C  =Σ_(k=0 and k≠5) ^(10)    (((−1)^k )/(k−5))C_(10) ^k (((x−z_1 )/(x−z_2 )))^(k−5)  −C_(10) ^5 ln(((x−z_1 )/(x−z_2 ))) +C  A =(1/((z_1 −z_2 )^(11) ))Σ_(k=0 and k≠5) ^(10)    (((−1)^k )/(k−5))C_(10) ^k (((x−z_1 )/(x−z_2 )))^(k−5)   −(C_(10) ^5 /((z_1 −z_2 )^(11) ))ln(((x−z_1 )/(x−z_2 ))) +C
1)complexmethodletA=dx(x2+x+1)6x2+x+1=0Δ=14=3z1=1+i32=ei2π3andz2=1i32=ei2π3A=dx(xz1)6(xz2)6=dx(xz1xz2)6(xz2)12changementxz1xz2=tgivexz1=txtz2(1t)x=z1tz2x=tz2z1t1dx=z2(t1)(z2tz1)(t1)2dt=z1z2(t1)2dtandxz2=z2tz1t1z2=z2tz1z2t+z2t1=z2z1(t1)A=z1z2(t1)2t6(z2z1t1)12dt=1(z2z1)11(t1)12(t1)2t6dt=1(z2z1)11(t1)10t6dt(z1z2)11×A=k=010C10k(1)ktkt6dt=k=010(1)kC10ktk6dt=k=0andk510(1)kk5C10ktk5C105lnt+C=k=0andk510(1)kk5C10k(xz1xz2)k5C105ln(xz1xz2)+CA=1(z1z2)11k=0andk510(1)kk5C10k(xz1xz2)k5C105(z1z2)11ln(xz1xz2)+C
Answered by MJS last updated on 26/Feb/20
Ostrogradski  Q_1 (x)=(x^2 +x+1)^5   Q_2 (x)=x^2 +x+1  P_1 (x)=((28)/(27))(x+(1/2))(x^8 +4x^7 +((21)/6)x^6 +((35)/2)x^5 +((223)/(10))x^4 +((201)/(10))x^3 +((1973)/(140))x^2 +((881)/(140))x+((297)/(140)))  P_2 (x)=((28)/(27))  ∫(dx/((x^2 +x+1)^6 ))=((P_1 (x))/(Q_1 (x)))+((28)/(27))∫(dx/(x^2 +x+1))  now it′s simplier than simple
OstrogradskiQ1(x)=(x2+x+1)5Q2(x)=x2+x+1P1(x)=2827(x+12)(x8+4x7+216x6+352x5+22310x4+20110x3+1973140x2+881140x+297140)P2(x)=2827dx(x2+x+1)6=P1(x)Q1(x)+2827dxx2+x+1nowitssimplierthansimple

Leave a Reply

Your email address will not be published. Required fields are marked *