Question Number 82971 by mathmax by abdo last updated on 26/Feb/20
$$\left.\mathrm{1}\right){find}\:\int\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{6}} } \\ $$$$\left.\mathrm{2}\right){calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{6}} } \\ $$
Commented by mathmax by abdo last updated on 26/Feb/20
$$\left.\mathrm{2}\right)\:{let}\:{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\mathrm{6}} }\:\Rightarrow\:{A}\:=\int_{−\infty} ^{+\infty} \:\frac{{dx}}{\left(\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{6}} } \\ $$$$=_{{x}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}} \left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{6}} \:\:\int_{−\infty} ^{+\infty} \:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{6}} }\:\:{let}\:\:{also}\:{changement} \\ $$$${t}={tan}\theta\:{give}\:\int_{−\infty} ^{+\infty} \:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{6}} }\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{6}} } \\ $$$$=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{d}\theta}{\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right)^{\mathrm{4}} }\:=\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\mathrm{8}} {t}\:{dt}\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)^{\mathrm{4}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\:\:\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} \:+\mathrm{2}\left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right){cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\:+{cos}^{\mathrm{4}} \left(\mathrm{2}{t}\right)\right){dt}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{\mathrm{1}+\mathrm{4}{cos}\left(\mathrm{2}{t}\right)\:+\mathrm{4}{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\:+\mathrm{2}{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)+\mathrm{4}{cos}^{\mathrm{3}} \left(\mathrm{2}{t}\right)+{cos}^{\mathrm{4}} \left(\mathrm{2}{t}\right)\right\}{dt} \\ $$$$=\frac{\pi}{\mathrm{16}}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{t}\right)+\frac{\mathrm{3}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right){dt}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{3}} \left(\mathrm{2}{t}\right){dt}+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} \left(\mathrm{2}{t}\right){dt} \\ $$$$\left.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}{sin}\left(\mathrm{2}{t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} =\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right){dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+{cos}\left(\mathrm{4}{t}\right)\right){dt} \\ $$$$=\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{8}}\left[{sin}\left(\mathrm{4}{t}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\pi}{\mathrm{4}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{3}} \left(\mathrm{2}{t}\right){dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}+{cos}\left(\mathrm{4}{t}\right)}{\mathrm{2}}\right){cos}\left(\mathrm{2}{t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left\{{cos}\left(\mathrm{2}{t}\right)+{cos}\left(\mathrm{2}{t}\right){cos}\left(\mathrm{4}{t}\right)\right\}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}\left(\mathrm{2}{t}\right){dt}\:\:+\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cos}\left(\mathrm{2}{t}\right)+{cos}\left(\mathrm{6}{t}\right)\right){dt}=\mathrm{0} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} {t}\:{dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\frac{\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right)\:+{cos}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{\pi}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}\left(\mathrm{2}{t}\right){dt}\:+\frac{\mathrm{1}}{\mathrm{8}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+{cos}\left(\mathrm{4}{t}\right)\right){dt} \\ $$$$=\frac{\pi}{\mathrm{8}}\:+\mathrm{0}+\frac{\pi}{\mathrm{16}}\:=\frac{\mathrm{3}\pi}{\mathrm{16}}\:\:{the}\:{value}\:{of}\:\:{I}\:{is}\:{known} \\ $$
Commented by abdomathmax last updated on 26/Feb/20
$$\left.\mathrm{1}\right)\:{complex}\:{method}\:\:{let}\:{A}\:=\int\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\mathrm{6}} } \\ $$$${x}^{\mathrm{2}} \:+{x}+\mathrm{1}\:=\mathrm{0}\rightarrow\Delta=\mathrm{1}−\mathrm{4}=−\mathrm{3}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}\:}} \:\:\:{and}\:{z}_{\mathrm{2}} \:\:=\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}={e}^{−\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${A}\:=\int\:\:\:\:\frac{{dx}}{\left({x}−{z}_{\mathrm{1}} \right)^{\mathrm{6}} \left({x}−{z}_{\mathrm{2}} \right)^{\mathrm{6}} }\:=\int\:\:\:\:\frac{{dx}}{\left(\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\right)^{\mathrm{6}} \left({x}−{z}_{\mathrm{2}} \right)^{\mathrm{12}} } \\ $$$${changement}\:\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\:={t}\:{give}\:{x}−{z}_{\mathrm{1}} ={tx}−{tz}_{\mathrm{2}} \:\Rightarrow \\ $$$$\left(\mathrm{1}−{t}\right){x}\:={z}_{\mathrm{1}} −{tz}_{\mathrm{2}} \:\Rightarrow{x}\:=\frac{{tz}_{\mathrm{2}} −{z}_{\mathrm{1}} }{{t}−\mathrm{1}}\:\Rightarrow \\ $$$${dx}\:=\frac{{z}_{\mathrm{2}} \left({t}−\mathrm{1}\right)−\left({z}_{\mathrm{2}} {t}−{z}_{\mathrm{1}} \right)}{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }{dt}\:=\frac{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} }\:{dt}\:{and} \\ $$$${x}−{z}_{\mathrm{2}} =\frac{{z}_{\mathrm{2}} {t}−{z}_{\mathrm{1}} }{{t}−\mathrm{1}}−{z}_{\mathrm{2}} =\frac{{z}_{\mathrm{2}} {t}−{z}_{\mathrm{1}} −{z}_{\mathrm{2}} {t}+{z}_{\mathrm{2}} }{{t}−\mathrm{1}} \\ $$$$=\frac{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }{\left({t}−\mathrm{1}\right)}\:\Rightarrow{A}\:=\int\:\:\frac{{z}_{\mathrm{1}} −{z}_{\mathrm{2}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} \:{t}^{\mathrm{6}} \left(\frac{{z}_{\mathrm{2}} −{z}_{\mathrm{1}} }{{t}−\mathrm{1}}\right)^{\mathrm{12}} }{dt} \\ $$$$=−\frac{\mathrm{1}}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)^{\mathrm{11}} }\:\int\:\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{12}} }{\left({t}−\mathrm{1}\right)^{\mathrm{2}} {t}^{\mathrm{6}} }{dt} \\ $$$$=\frac{−\mathrm{1}}{\left({z}_{\mathrm{2}} −{z}_{\mathrm{1}} \right)^{\mathrm{11}} }\int\:\:\frac{\left({t}−\mathrm{1}\right)^{\mathrm{10}} }{{t}^{\mathrm{6}} }{dt} \\ $$$$\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{11}} ×{A}\:=\int\:\:\frac{\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \:{C}_{\mathrm{10}} ^{{k}} \left(−\mathrm{1}\right)^{{k}} \:{t}^{{k}} }{{t}^{\mathrm{6}} }{dt} \\ $$$$=\int\:\:\sum_{{k}=\mathrm{0}} ^{\mathrm{10}} \left(−\mathrm{1}\right)^{{k}} \:{C}_{\mathrm{10}} ^{{k}} \:{t}^{{k}−\mathrm{6}} \:{dt} \\ $$$$=\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{5}} ^{\mathrm{10}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{5}}{C}_{\mathrm{10}} ^{{k}} \:{t}^{{k}−\mathrm{5}} \:−{C}_{\mathrm{10}} ^{\mathrm{5}} \:{lnt}\:+{C} \\ $$$$=\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{5}} ^{\mathrm{10}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{5}}{C}_{\mathrm{10}} ^{{k}} \left(\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\right)^{{k}−\mathrm{5}} \:−{C}_{\mathrm{10}} ^{\mathrm{5}} {ln}\left(\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\right)\:+{C} \\ $$$${A}\:=\frac{\mathrm{1}}{\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{11}} }\sum_{{k}=\mathrm{0}\:{and}\:{k}\neq\mathrm{5}} ^{\mathrm{10}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}−\mathrm{5}}{C}_{\mathrm{10}} ^{{k}} \left(\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\right)^{{k}−\mathrm{5}} \\ $$$$−\frac{{C}_{\mathrm{10}} ^{\mathrm{5}} }{\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)^{\mathrm{11}} }{ln}\left(\frac{{x}−{z}_{\mathrm{1}} }{{x}−{z}_{\mathrm{2}} }\right)\:+{C} \\ $$$$ \\ $$
Answered by MJS last updated on 26/Feb/20
$$\mathrm{Ostrogradski} \\ $$$${Q}_{\mathrm{1}} \left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{5}} \\ $$$${Q}_{\mathrm{2}} \left({x}\right)={x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$${P}_{\mathrm{1}} \left({x}\right)=\frac{\mathrm{28}}{\mathrm{27}}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}^{\mathrm{8}} +\mathrm{4}{x}^{\mathrm{7}} +\frac{\mathrm{21}}{\mathrm{6}}{x}^{\mathrm{6}} +\frac{\mathrm{35}}{\mathrm{2}}{x}^{\mathrm{5}} +\frac{\mathrm{223}}{\mathrm{10}}{x}^{\mathrm{4}} +\frac{\mathrm{201}}{\mathrm{10}}{x}^{\mathrm{3}} +\frac{\mathrm{1973}}{\mathrm{140}}{x}^{\mathrm{2}} +\frac{\mathrm{881}}{\mathrm{140}}{x}+\frac{\mathrm{297}}{\mathrm{140}}\right) \\ $$$${P}_{\mathrm{2}} \left({x}\right)=\frac{\mathrm{28}}{\mathrm{27}} \\ $$$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{6}} }=\frac{{P}_{\mathrm{1}} \left({x}\right)}{{Q}_{\mathrm{1}} \left({x}\right)}+\frac{\mathrm{28}}{\mathrm{27}}\int\frac{{dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{simplier}\:\mathrm{than}\:\mathrm{simple} \\ $$