Menu Close

1-find-dx-x-2-x-1-x-2-x-1-2-calculate-0-1-dx-x-2-x-1-x-2-x-1-




Question Number 44179 by abdo.msup.com last updated on 22/Sep/18
1) find ∫   (dx/( (√(x^2  +x+1))+(√(x^2 −x+1))))  2)calculate  ∫_0 ^1      (dx/( (√(x^2  +x+1))+(√(x^2 −x +1))))
1)finddxx2+x+1+x2x+12)calculate01dxx2+x+1+x2x+1
Commented by maxmathsup by imad last updated on 07/Oct/18
let A =∫    (dx/( (√(x^2 +x+1)) +(√(x^2 −x+1)))) ⇒A =∫  (((√(x^2 +x+1))−(√(x^2 −x+1)))/(x^2  +x+1−x^2 +x−1))dx  =(1/2) ∫  ((√(x^2 +x+1))/x)dx−(1/2) ∫ ((√(x^2 −x+1))/x)dx⇒2A= H −K  H = ∫  ((x^2  +x +1)/(x(√(x^2 +x+1))))dx = ∫   (x/( (√(x^2 +x+1))))dx  + ∫    (dx/( (√(x^2 +x+1)))) +∫   (dx/(x(√(x^2  +x +1))))  but ∫   (x/( (√(x^2 +x +1))))dx =(1/2)∫ ((2x+1−1)/( (√(x^2  +x+1))))dx  =(√(x^2 +x +1))−(1/2) ∫   (dx/( (√(x^2  +x+1)))) ⇒H =(√(x^2 +x+1))+(1/2)∫   (dx/( (√(x^2 +x+1)))) +∫  (dx/(x(√(x^2 +x+1))))  ∫   (dx/( (√(x^2 +x+1)))) =∫   (dx/( (√((x+(1/2))^2 +(3/4))))) =_(x+(1/2)=((√3)/2)tan(t))  ((√3)/2) ∫    ((1+tan^2 t)/(((√3)/2)(√(1+tan^2 t))))dt  =∫ (√(1+tan^2 t))dt = ∫   (dt/(cost)) =_(tan((t/2))=u)     ∫     (1/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 ))  =∫   ((2du)/(1−u^2 )) =∫  ( (1/(1−u))+(1/(1+u)))du =ln∣((1+u)/(1−u))∣ =ln∣((1+tan((t/2)))/(1−tan((t/2))))∣  =ln∣ tan((π/4)+(t/2))∣ =ln∣tan( (1/2)arctan(((2x+1)/( (√3))))+(π/4))∣  ∫    (dx/(x(√(x^2 +x+1))))  =∫   (dx/(x(√((x+(1/2))^2 +(3/4))))) = _(x+(1/2)=((√3)/2)sh(t))  ((√3)/2)∫    ((ch(t))/((((√3)/2)sh(t)−(1/2))((√3)/2)ch(t)))dt  = ∫   ((2dt)/( (√3)((e^t  −e^(−t) )/2)−1)) =∫   ((4dt)/( (√3)e^t  −(√3)e^(−t) −2))  =_(e^t =u)     ∫     (4/( (√3)u −(√3)u^(−1) −2))  (du/u)  = ∫   ((4du)/( (√3)u^2 −(√3)−2u))du =∫    ((4du)/( (√3)u^2 −2u −(√3)))  Δ^′ =1+3 =4 ⇒u_1 =((1 +2)/( (√3))) =(√3)  and u_2 =((1−2)/( (√3))) =−(1/( (√3)))  ∫ F(u)du = ∫    ((4du)/( (√3)(u−(√3))(u+(1/( (√3)))))) =(4/( (√3))) (1/( (√3)+(1/( (√3))))) ∫   ((1/(u−(√3))) −(1/(u+(1/( (√3))))))du  =ln∣((u−(√3))/(u+(1/( (√3)))))∣ =ln∣ ((e^t −(√3))/(e^t  +(1/( (√3)))))∣  but t =argsh(((2x+1)/( (√3))))=ln(((2x+1)/( (√3))) +(√(1+(((2x+1)/( (√3))))^2 ))) ⇒  ∫ F(u)du =ln∣ ((((2x+1)/( (√3)))+(√(1+(((2x+1)/( (√3))))^2 ))−(√3))/(((2x+1)/( (√3)))+(√(1+(((2x+1)/( (√3))))^2 ))+(1/( (√3)))))∣ +c  ⇒  H =(√(x^2 +x+1)) +(1/2)ln∣tan((1/2)arctan(((2x+1)/( (√3)))) +(π/4))∣   +ln∣ ((((2x+1)/( (√3)))+(√(1+(((2x+1)/( (√3))))^2 ))−(√3))/(((2x+1)/( (√3)))+(√(1+(((2x+1)/( (√3))))^2 ))+(1/( (√3)))))∣ +c  for determination of K we use the changement x=−t ...
letA=dxx2+x+1+x2x+1A=x2+x+1x2x+1x2+x+1x2+x1dx=12x2+x+1xdx12x2x+1xdx2A=HKH=x2+x+1xx2+x+1dx=xx2+x+1dx+dxx2+x+1+dxxx2+x+1butxx2+x+1dx=122x+11x2+x+1dx=x2+x+112dxx2+x+1H=x2+x+1+12dxx2+x+1+dxxx2+x+1dxx2+x+1=dx(x+12)2+34=x+12=32tan(t)321+tan2t321+tan2tdt=1+tan2tdt=dtcost=tan(t2)=u11u21+u22du1+u2=2du1u2=(11u+11+u)du=ln1+u1u=ln1+tan(t2)1tan(t2)=lntan(π4+t2)=lntan(12arctan(2x+13)+π4)dxxx2+x+1=dxx(x+12)2+34=x+12=32sh(t)32ch(t)(32sh(t)12)32ch(t)dt=2dt3etet21=4dt3et3et2=et=u43u3u12duu=4du3u232udu=4du3u22u3Δ=1+3=4u1=1+23=3andu2=123=13F(u)du=4du3(u3)(u+13)=4313+13(1u31u+13)du=lnu3u+13=lnet3et+13butt=argsh(2x+13)=ln(2x+13+1+(2x+13)2)F(u)du=ln2x+13+1+(2x+13)232x+13+1+(2x+13)2+13+cH=x2+x+1+12lntan(12arctan(2x+13)+π4)+ln2x+13+1+(2x+13)232x+13+1+(2x+13)2+13+cfordeterminationofKweusethechangementx=t
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Sep/18
∫(dx/( (√(x^2 +x+1)) +(√(x^2 −x+1)) ))  ∫(((√(x^2 +x+1)) −(√(x^2 −x+1)) )/((x^2 +x+1)−(x^2 −x+1)))dx  ∫(((√(x^2 +x+1)) )/(2x))dx−∫(((√(x^2 −x+1)) )/(2x))dx  (I_1 /2)−(I_2 /2)=I  I_1 =∫((x^2 +x+1)/(x(√(x^2 +x+1))))dx  =∫(x/( (√(x^2 +x+1))))dx+∫(dx/( (√(x^2 +x+1))))+∫(dx/(x(√(x^2 +x+1))))  ★(1/2)∫((2x+1−1)/( (√(x^2 +x+1))))dx+★★∫(dx/( (√(x^2 +2.x.(1/2)+(1/4)+1−(1/4)))))+★★★this part solving separTely  ★★★∫(dx/(x(√(x^2 +x+1))))  x=(1/t)  dx=−(1/t^2 )dt  ∫((−dt)/(t^2 ×(1/t)×(√((1/t^2 )+(1/t)+1))))  ∫((−t×dt)/(t(√(t^2 +t+1))))  −∫(dt/( (√((t+(1/2))^2 +(3/4)))))=−ln∣(t+(1/2))+(√((t+(1/2))^2 +(3/4))) ∣  =−ln∣((1/x)+(1/2))+(√(((1/x)+(1/2))^2 +(3/4))) ∣  now ★   (1/2)∫((2x+1−1)/( (√(x^2 +x+1))))  (1/2)∫((d(x^2 +x+1))/( (√(x^2 +x+1))))−(1/2)∫(dx/( (√((x+(1/2))^2 +(3/4)))))  (1/2)×(((√(x^2 +x+1)) )/(1/2))−(1/2)ln∣(x+(1/2))+(√(x^2 +x+1)) ∣  =(√(x^2 +x+1)) −(1/2)ln∣(x+(1/2))+(√(x^2 +x+1)) ∣  now★★∫(dx/( (√((x+(1/2))^2 +(3/4)))))  =ln∣(x+(1/2))+(√(x^2 +x+1)) ∣  similarly  the nxt I_2  can be solved..lenthy question...  ∫(((√(x^2 −x+1)) )/x)dx  ∫((x^2 −x+1)/(x(√(x^2 −x+1))))dx  ★∫(x/( (√(x^2 −x+1))))dx−★★∫(dx/( (√(x^2 −x+1))))+★★★∫(dx/(x(√(x^2 −x+1))))  ★  (1/2)∫((2x−1+1)/( (√(x^2 −x+1))))dx  (1/2)∫((d(x^2 −x+1))/( (√(x^2 −x+1))))dx+(1/2)∫(dx/( (√((x−(1/2))^2 +(3/4)))))  (1/2)×((√(x^2 −x+1))/(1/2))+(1/2)ln∣(x−(1/2))+(√(x^2 −x+1)) ∣  ★[★  ∫(dx/( (√(x^2 −x+1))))  ∫(dx/( (√((x−(1/2))^2 +(3/4)))))  =ln∣(x−(1/2))+(√(x^2 −x+1)) ∣  ★★★  ∫(dx/(x(√(x^2 −x+1))))  t=(1/x)  −1∫(dt/t^2 )×(1/((1/t)(√((1/t^2 )−(1/t)+1))))  −∫(dt/( (√(1−t+t^2 ))))  −∫(dt/( (√((t−(1/2))^2 +(3/4)))))  −ln∣(t−(1/2))+(√(t^2 −t+1)) ∣  −ln∣((1/x)−(1/2))+(√((1/x^2 )−(1/x)+1))   now pls add ...to get ...I=((I_1 −I_2 )/2)
dxx2+x+1+x2x+1x2+x+1x2x+1(x2+x+1)(x2x+1)dxx2+x+12xdxx2x+12xdxI12I22=II1=x2+x+1xx2+x+1dx=xx2+x+1dx+dxx2+x+1+dxxx2+x+1122x+11x2+x+1dx+dxx2+2.x.12+14+114+thispartsolvingseparTelydxxx2+x+1x=1tdx=1t2dtdtt2×1t×1t2+1t+1t×dttt2+t+1dt(t+12)2+34=ln(t+12)+(t+12)2+34=ln(1x+12)+(1x+12)2+34now122x+11x2+x+112d(x2+x+1)x2+x+112dx(x+12)2+3412×x2+x+11212ln(x+12)+x2+x+1=x2+x+112ln(x+12)+x2+x+1nowdx(x+12)2+34=ln(x+12)+x2+x+1similarlythenxtI2canbesolved..lenthyquestionx2x+1xdxx2x+1xx2x+1dxxx2x+1dxdxx2x+1+dxxx2x+1122x1+1x2x+1dx12d(x2x+1)x2x+1dx+12dx(x12)2+3412×x2x+112+12ln(x12)+x2x+1[dxx2x+1dx(x12)2+34=ln(x12)+x2x+1dxxx2x+1t=1x1dtt2×11t1t21t+1dt1t+t2dt(t12)2+34ln(t12)+t2t+1ln(1x12)+1x21x+1nowplsaddtogetI=I1I22

Leave a Reply

Your email address will not be published. Required fields are marked *