Question Number 91321 by M±th+et+s last updated on 29/Apr/20
$$\left.\mathrm{1}\right){find}\:{eigen}\:{values}\:{and}\:{corresponding} \\ $$$${eigen}\:{vector}\:{of}\:{the}\:{matrix} \\ $$$$ \\ $$$${A}=\begin{bmatrix}{{cos}\left(\theta\right)}&{−{sin}\left(\theta\right)}\\{{sin}\left(\theta\right)}&{\:\:\:\:\:{cos}\left(\theta\right)}\end{bmatrix} \\ $$$$ \\ $$$$\left.\mathrm{2}\right){solve} \\ $$$$ \\ $$$$\mathrm{6}{y}^{\mathrm{2}} {dx}−{x}\left({y}+\mathrm{2}{x}^{\mathrm{2}} \right){dy}=\mathrm{0} \\ $$
Commented by mathmax by abdo last updated on 30/Apr/20
$$\left.\mathrm{1}\right)\:{P}\left({x}\right)\:={det}\left({A}−{xI}\right)\:=\begin{vmatrix}{{cos}\theta−{x}\:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\theta−{x}}\end{vmatrix} \\ $$$$=\left({cos}\theta−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta\: \\ $$$${P}\left({x}\right)=\mathrm{0}\:\Leftrightarrow\left({x}−{cos}\theta\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \theta\:=\mathrm{0}\Leftrightarrow\left({x}−{cos}\theta\right)^{\mathrm{2}} \:=\left({isin}\theta\right)^{\mathrm{2}} \:\Rightarrow \\ $$$${x}−{cos}\theta\:=\overset{−} {+}{isin}\theta\:\Rightarrow{x}\:={cos}\theta\:\overset{−} {+}{isin}\theta\:\:{so}\:{the}\:{values}\:{are} \\ $$$$\lambda_{\mathrm{1}} ={e}^{{i}\theta} \:\:{and}\:\lambda_{\mathrm{2}} ={e}^{−{i}\theta} \\ $$$${V}\left(\lambda_{\mathrm{1}} \right)={Ker}\left({A}−\lambda_{\mathrm{1}} {I}\right)\:=\left\{{u}\:/\left({A}−\lambda_{\mathrm{1}} {I}\right){u}\:=\mathrm{0}\right\} \\ $$$${u}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\:\:\:\:\:\:\left({A}−\lambda_{\mathrm{1}} \right){u}=\mathrm{0}\:\Rightarrow\begin{pmatrix}{{cos}\theta−{e}^{{i}\theta} \:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\theta−{e}^{{i}\theta} }\end{pmatrix}\:\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{−{isin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−{isin}\theta}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\mathrm{0}\:\Rightarrow\begin{cases}{−{isin}\theta\:{x}−{sin}\theta{y}\:=\mathrm{0}}\\{{sin}\theta{x}\:−{isin}\theta{y}\:=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\begin{cases}{{isin}\theta\:{x}+{sin}\theta\:{y}\:=\mathrm{0}}\\{{sin}\theta\:{x}−{isin}\theta\:{y}=\mathrm{0}\:\Rightarrow{sin}\theta\:{x}\:={isin}\theta\:{y}}\end{cases} \\ $$$${if}\:{sin}\theta\:\neq\mathrm{0}\:\Rightarrow{x}\:={iy}\:\Rightarrow\left({x},{y}\right)=\left({iy},{y}\right)\:={y}\:{e}_{\mathrm{1}} \:\:\:\:{with}\:{e}_{\mathrm{1}} \begin{pmatrix}{{i}}\\{\mathrm{1}}\end{pmatrix} \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)\:={Ker}\left({A}−\lambda_{\mathrm{2}} {I}\right)\:=\left\{{u}\:/\left({A}−\lambda_{\mathrm{2}} {I}\right){u}\:=\mathrm{0}\right\} \\ $$$$\left({A}−\lambda_{\mathrm{2}} {I}\right){u}\:=\mathrm{0}\:\Rightarrow\begin{pmatrix}{{cos}\theta\:−{e}^{−{i}\theta} \:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{cos}\theta\:−{e}^{−{i}\theta} }\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\mathrm{0}\:\Rightarrow \\ $$$$\begin{pmatrix}{{isin}\theta\:\:\:\:\:\:\:\:\:−{sin}\theta}\\{{sin}\theta\:\:\:\:\:\:\:\:\:\:\:\:\:\:{isin}\theta}\end{pmatrix}\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}=\mathrm{0}\:\Rightarrow\begin{cases}{{isin}\theta\:{x}−{sin}\theta{y}\:=\mathrm{0}}\\{{sin}\theta\:{x}\:+{isin}\theta\:{y}\:=\mathrm{0}\:}\end{cases} \\ $$$$\Rightarrow{sin}\theta\:{x}\:=−{isin}\theta\:{y}\:{so}\:{if}\:{sin}\theta\:\neq\mathrm{0}\:{we}\:{get}\:{x}=−{iy}\:\Rightarrow \\ $$$$\left({x},{y}\right)\:=\left(−{iy},{y}\right)={ye}_{\mathrm{2}} \:\:{with}\:{e}_{\mathrm{2}} \begin{pmatrix}{−{i}}\\{\mathrm{1}}\end{pmatrix} \\ $$$${We}\:{see}\:\:{V}\left(\lambda_{\mathrm{1}} \right)\:=\Delta_{{e}_{\mathrm{1}} } \:\:\:\:\:\:\:{dim}\left({V}\left(\lambda_{\mathrm{1}} \right)\right)=\mathrm{1} \\ $$$${V}\left(\lambda_{\mathrm{2}} \right)=\Delta_{{e}_{\mathrm{2}} \:} \:\:\:\:\:{and}\:{dim}\left({V}\left(\lambda_{\mathrm{2}} \right)\right)=\mathrm{1} \\ $$$${A}\:{is}\:{diagonalisable}…. \\ $$$$ \\ $$
Commented by M±th+et+s last updated on 30/Apr/20
$${nice}\:{and}\:{correct}\:{work}\:{sir}\:{god}\:{bless}\:{you} \\ $$
Commented by turbo msup by abdo last updated on 30/Apr/20
$${you}\:{are}\:{welcome}\:. \\ $$