1-find-f-a-0-1-dx-ax-1-x-2-x-1-with-a-gt-0-2-calculate-f-a-3-find-the-value-of-0-1-xdx-ax-1-2-x-2-x-1-4-calculate-0-1-dx-2x-1-x-2-x-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 53228 by maxmathsup by imad last updated on 19/Jan/19 1)findf(a)=∫01dx(ax+1)x2−x+1witha>02)calculatef′(a)3)findthevalueof∫01xdx(ax+1)2x2−x+14)calculate∫01dx(2x+1)x2−x+1and∫01xdx(2x+1)2x2−x+1 Commented by Abdo msup. last updated on 20/Jan/19 1)wehavex2−x+1=(x−12)2+34changementx−12=32sh(t)givef(a)=∫argsh(−13)argsh(13)1(a(12+32sh(t))+1)32ch(t)32ch(t)dt=∫ln(−13+23)ln(13+23)2dta+a3sh(t)+2=∫ln(13)ln(3)2dta+a3et−e−t2+2=4∫ln(13)ln(3)dt2a+a3(et−e−t)+4=et=u4∫13312a+a3(u−u−1)+4duu=4∫133du2au+a3u2−a3+4u=4∫133dua3u2+(2a+4)u−a3rootsofp(u)=a3u2+(2a+4)u−a3Δ′=(a+2)2+3a2=a2+4a+4+3a2=4a2+4a+u1=−a−2+21+a+a2a3u2=−a−2−21+a+a2a3⇒F(u)=1a3(u−u1)(u−u2)=1a31u1−u2{1u−u1−1u−u2}=1a3141+a+a2a3{1u−u1−1u−u2}=141+a+a2{1u−u1−1u−u2}?⇒f(a)=11+a+a2[ln∣u−u1u−u2∣]133=11+a+a2{ln∣3−u13−u2∣−ln∣13−u113−u2∣}=11+a+a2{ln∣3−−a−2+21+a+a2a33−−a−2+21+a+a2a3∣−ln∣1−3−a−2+21+a+a2a31−3−a−2−21+a+a2a3∣=11+a+a2{ln∣4a+2+21+a+a24a+2−21+a+a2∣−ln∣2a3+2−21+a+a22a3+2+21+a+a2∣}⇒f(a)=11+a+a2{ln∣2a+1+1+a+a22a+1−1+a+a2∣−ln∣a3+1−1+a+a2a3+1+1+a+a2∣}. Commented by Abdo msup. last updated on 20/Jan/19 wehavef′(a)=∫01−xdx(ax+1)2x2−x+1⇒∫01xdx(ax+1)2x2−x+1=−f′(a)restcalculusoff′(a)..becontinued… Commented by Abdo msup. last updated on 20/Jan/19 4)∫01dx(2x+1)x2−x+1=f(2)=11+2+22{ln∣5+1+2+225−1+2+22∣−ln∣23+1−1+2+2223+1+1+2+22∣}=17{ln∣5+75−7∣−ln∣23+1−723+1+7∣}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-first-three-terms-in-the-binomial-expansion-p-q-m-in-ascending-order-of-q-are-denoted-by-a-b-and-c-respectively-Show-that-b-2-ac-2m-m-1-Next Next post: Question-184302 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.