Menu Close

1-find-f-a-0-1-dx-ax-1-x-2-x-1-with-a-gt-0-2-calculate-f-a-3-find-the-value-of-0-1-xdx-ax-1-2-x-2-x-1-4-calculate-0-1-dx-2x-1-x-2-x-1-




Question Number 53228 by maxmathsup by imad last updated on 19/Jan/19
1) find f(a) =∫_0 ^1    (dx/((ax+1)(√(x^2 −x+1))))   with  a>0  2) calculate f^′ (a)  3)find the value of  ∫_0 ^1   ((xdx)/((ax+1)^2 (√(x^2 −x+1))))  4) calculate ∫_0 ^1    (dx/((2x+1)(√(x^2 −x+1)))) and ∫_0 ^1    ((xdx)/((2x+1)^2 (√(x^2 −x+1))))
1)findf(a)=01dx(ax+1)x2x+1witha>02)calculatef(a)3)findthevalueof01xdx(ax+1)2x2x+14)calculate01dx(2x+1)x2x+1and01xdx(2x+1)2x2x+1
Commented by Abdo msup. last updated on 20/Jan/19
1)we have x^2 −x +1 =(x−(1/2))^2 +(3/4) changement  x−(1/2) =((√3)/2)sh(t) give   f(a) = ∫_(argsh(−(1/( (√3))))) ^(argsh((1/( (√3)))))     (1/((a((1/2)+((√3)/2)sh(t))+1)((√3)/2)ch(t)))((√3)/2)ch(t)dt  =∫_(ln(−(1/( (√3))) +(2/( (√3))))) ^(ln((1/( (√3))) +(2/( (√3)))))    ((2dt)/(a +a(√3)sh(t)+2))  =∫_(ln((1/( (√3))))) ^(ln((√3)))    ((2dt)/(a+a(√3)((e^t −e^(−t) )/2)+2))  = 4 ∫_(ln((1/( (√3))))) ^(ln((√3)))     (dt/(2a +a(√3)(e^t −e^(−t) )+4))  =_(e^t =u)     4 ∫_(1/( (√3))) ^(√3)         (1/(2a+a(√3)(u−u^(−1) )+4)) (du/u)  =4 ∫_(1/( (√3))) ^(√3)        (du/(2au +a(√3)u^2  −a(√3) +4u))  =4 ∫_(1/( (√3))) ^(√3)    (du/(a(√3)u^2  +(2a+4)u−a(√3)))  roots of p(u)=a(√3)u^2 +(2a+4)u−a(√3)  Δ^′ =(a+2)^2 +3a^2  =a^2 +4a +4 +3a^2 =4a^2 +4a +  u_1 =((−a−2+2(√(1+a+a^2 )))/(a(√3)))  u_2 =((−a−2−2(√(1+a+a^2 )))/(a(√3))) ⇒  F(u) =(1/(a(√3)(u−u_1 )(u−u_2 )))  =(1/(a(√3)))(1/(u_1 −u_2 )){ (1/(u−u_1 )) −(1/(u−u_2 ))}  =(1/(a(√3))) (1/((4(√(1+a+a^2 )))/(a(√3)))) {(1/(u−u_1 )) −(1/(u−u_2 ))}  =(1/(4(√(1+a+a^2 )))){(1/(u−u_1 )) −(1/(u−u_2 ))}? ⇒  f(a) =(1/( (√(1+a+a^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_(1/( (√3))) ^(√3)   =(1/( (√(1+a+a^2 )))){ln∣(((√3)−u_1 )/( (√3)−u_2 ))∣−ln∣(((1/( (√3)))−u_1 )/((1/( (√3)))−u_2 ))∣}  =(1/( (√(1+a+a^2 )))){ln∣(((√3)−((−a−2+2(√(1+a+a^2 )))/(a(√3))))/( (√3)−((−a−2+2(√(1+a+a^2 )))/(a(√3)))))∣  −ln∣((1−(√3)((−a−2+2(√(1+a+a^2 )))/(a(√3))))/(1−(√3)((−a−2 −2(√(1+a+a^2 )))/(a(√3)))))∣  =(1/( (√(1+a+a^2 )))){ ln∣((4a+2+2(√(1+a+a^2 )))/(4a+2−2(√(1+a+a^2 ))))∣  −ln∣ ((2a(√3)+2−2(√(1+a+a^2 )))/(2a(√3)+2 +2(√(1+a+a^2 ))))∣}  ⇒f(a) =(1/( (√(1+a+a^2 )))){ ln∣((2a+1+(√(1+a+a^2 )))/(2a+1−(√(1+a+a^2 ))))∣  −ln∣((a(√3)+1−(√(1+a+a^2 )))/(a(√3)+1 +(√(1+a+a^2 ))))∣} .
1)wehavex2x+1=(x12)2+34changementx12=32sh(t)givef(a)=argsh(13)argsh(13)1(a(12+32sh(t))+1)32ch(t)32ch(t)dt=ln(13+23)ln(13+23)2dta+a3sh(t)+2=ln(13)ln(3)2dta+a3etet2+2=4ln(13)ln(3)dt2a+a3(etet)+4=et=u413312a+a3(uu1)+4duu=4133du2au+a3u2a3+4u=4133dua3u2+(2a+4)ua3rootsofp(u)=a3u2+(2a+4)ua3Δ=(a+2)2+3a2=a2+4a+4+3a2=4a2+4a+u1=a2+21+a+a2a3u2=a221+a+a2a3F(u)=1a3(uu1)(uu2)=1a31u1u2{1uu11uu2}=1a3141+a+a2a3{1uu11uu2}=141+a+a2{1uu11uu2}?f(a)=11+a+a2[lnuu1uu2]133=11+a+a2{ln3u13u2ln13u113u2}=11+a+a2{ln3a2+21+a+a2a33a2+21+a+a2a3ln13a2+21+a+a2a313a221+a+a2a3=11+a+a2{ln4a+2+21+a+a24a+221+a+a2ln2a3+221+a+a22a3+2+21+a+a2}f(a)=11+a+a2{ln2a+1+1+a+a22a+11+a+a2lna3+11+a+a2a3+1+1+a+a2}.
Commented by Abdo msup. last updated on 20/Jan/19
we have f^′ (a) =∫_0 ^1 ((−xdx)/((ax+1)^2 (√(x^2 −x+1)))) ⇒  ∫_0 ^1   ((xdx)/((ax+1)^2 (√(x^2 −x +1)))) =−f^′ (a) rest calculus of  f^′ (a)..be continued...
wehavef(a)=01xdx(ax+1)2x2x+101xdx(ax+1)2x2x+1=f(a)restcalculusoff(a)..becontinued
Commented by Abdo msup. last updated on 20/Jan/19
4) ∫_0 ^1      (dx/((2x+1)(√(x^2 −x +1)))) =f(2)  =(1/( (√(1+2 +2^2 )))){ln∣((5+(√(1+2+2^2 )))/(5−(√(1+2+2^2 ))))∣−ln∣((2(√3)+1−(√(1+2+2^2 )))/(2(√3)+1+(√(1+2+2^2 ))))∣}  =(1/( (√7))){ln∣((5+(√7))/(5−(√7)))∣−ln∣((2(√3)+1−(√7))/(2(√3)+1+(√7)))∣} .
4)01dx(2x+1)x2x+1=f(2)=11+2+22{ln5+1+2+2251+2+22ln23+11+2+2223+1+1+2+22}=17{ln5+757ln23+1723+1+7}.

Leave a Reply

Your email address will not be published. Required fields are marked *