Menu Close

1-find-f-a-0-2pi-dt-a-cos-2-t-sin-2-t-with-a-0-2-find-g-a-0-2pi-cos-2-t-a-cos-2-t-sin-2-t-2-dt-




Question Number 35225 by abdo mathsup 649 cc last updated on 16/May/18
1) find f(a) = ∫_0 ^(2π)      (dt/(a cos^2 t + sin^2 t)) with a≠0  2) find g(a) = ∫_0 ^(2π)    ((cos^2 t)/((a cos^2 t +sin^2 t)^2 ))dt
1)findf(a)=02πdtacos2t+sin2twitha02)findg(a)=02πcos2t(acos2t+sin2t)2dt
Commented by abdo mathsup 649 cc last updated on 16/May/18
a>0
a>0
Commented by prof Abdo imad last updated on 20/May/18
we have f(a) = ∫_0 ^(2π)      (dt/(a((1+cos(2t))/2) +((1−cos(t))/2)))  = 2 ∫_0 ^(2π)          (dt/(a +a cos(2t) +1 −cos(2t)))  =2 ∫_0 ^(2π)     (dt/(a+1 +(a−1)cos(2t)))  =_(2t=x)   2 ∫_0 ^(4π)         (1/(a+1 +(a−1)cosx)) (dx/2)  = ∫_0 ^(2π)       (dx/(a+1 +(a−1)cosx))  +∫_(2π) ^(4π)       (dx/(a+1 +(a−1)cosx))  ∫_(2π) ^(4π)      (dx/(a+1 +(a−1)cosx)) =_(x=t+2π)  ∫_0 ^(2π)      (dt/(a+1 +(a−1)cost))  ⇒ f(a) = 2 ∫_0 ^(2π)       (dx/(a+1 +(a−1)cosx))  changement  e^(ix)  =z  give  f(a) = 2∫_(∣z∣=1)        (1/(a+1 +(a−1)((z+z^(−1) )/2))) (dz/(iz))  f(a) =4  ∫_(∣z∣=1)        (dz/(iz(2+2a +(a−1)(z+z^(−1) ))))  =∫_(∣z∣=1)        ((−4i dz)/(2(1+a)z +(a−1)z^2  +a−1))  let inyroduce tbe complex function  ϕ(z) =   ((−4i)/((a−1)z^2   +2(a+1)z +a−1)) .poles of ϕ?
wehavef(a)=02πdta1+cos(2t)2+1cos(t)2=202πdta+acos(2t)+1cos(2t)=202πdta+1+(a1)cos(2t)=2t=x204π1a+1+(a1)cosxdx2=02πdxa+1+(a1)cosx+2π4πdxa+1+(a1)cosx2π4πdxa+1+(a1)cosx=x=t+2π02πdta+1+(a1)costf(a)=202πdxa+1+(a1)cosxchangementeix=zgivef(a)=2z∣=11a+1+(a1)z+z12dzizf(a)=4z∣=1dziz(2+2a+(a1)(z+z1))=z∣=14idz2(1+a)z+(a1)z2+a1letinyroducetbecomplexfunctionφ(z)=4i(a1)z2+2(a+1)z+a1.polesofφ?
Commented by abdo mathsup 649 cc last updated on 20/May/18
Δ^′  = (a+1)^2 −(a−1)^2 = a^2  +2a+1−a^2  +2a−1=4a  z_1 = ((−a−1 +2(√a))/(a−1)) =  ((a −2(√a) +1)/(1−a)) = (((1−(√a))^2 )/((1−(√a))(1+(√a))))  = ((1−(√a))/(1+(√a)))   and z_2 = ((−a−1−2(√a))/(a−1)) = ((a +2(√a) +1)/(1−a))  = (((1+(√a))^2 )/((1−(√a))(1+(√a)))) = ((1+(√a))/(1−(√a)))  case1  a>1  ∣z_1 ∣ −1 = (((√a) −1)/( (√a)+1)) −1=(((√a) −1−(√a) −1)/( (√a) +1))  = ((−2)/( (√a) +1))<0 ⇒ ∣z_1 ∣<1  ∣z_2 ∣−1 = (1/(∣z_1 ∣)) −1 = ((1−∣z_1 ∣)/(∣z_1 ∣)) >0 ⇒ ∣z_2 ∣>1 (to  eliminate from residus)  ∫_(∣z∣=1) ϕ(2)dz =2iπ Res(ϕ,z_1 )  we have  ϕ(z) =  ((−4i)/((a−1)(z −z_1 )(z−z_2 ))) ⇒  Res(ϕ, z_1 ) =   ((−4i)/((a−1)(z_1  −z_2 )))  = ((−4i)/((a−1)(z_1  −(1/z_1 ))))  = ((−4i z_1 )/((a−1)(z_1 ^2  −1)))  =((−4i ((1−(√a))/(1+(√a))))/((a−1)( (((1−(√a))^2 )/((1+(√a))^2 )) −1)))  = ((−4i(1−(√a)))/((a−1)(1+(√a)){ (1−(√a))^2  −(1+(√a))^2 })) (1+(√a))^2   = ((4i)/(a−2(√a) +1 −a −2(√a) −1)) =  ((4i)/(−4(√a))) =((−i)/( (√a)))  ∫_(∣z∣=1) ϕ(z)dz =2iπ {((−i)/( (√a)))} = ((2π)/( (√a))) ⇒   f(a) =  ((2π)/( (√a)))  with  a>1  case 2     0<a<1   ∣z_1 ∣ −1 =((1−(√a))/(1+(√a))) −1  = ((1−(√a)−1−(√a))/(1+(√a))) = ((−2(√a))/(1+a)) <0 ⇒ ∣z_1 ∣<1  and  ∣z_2 ∣>1   so the value of f(a) dont change and  f(a) = ((2π)/( (√a))) .
Δ=(a+1)2(a1)2=a2+2a+1a2+2a1=4az1=a1+2aa1=a2a+11a=(1a)2(1a)(1+a)=1a1+aandz2=a12aa1=a+2a+11a=(1+a)2(1a)(1+a)=1+a1acase1a>1z11=a1a+11=a1a1a+1=2a+1<0z1∣<1z21=1z11=1z1z1>0z2∣>1(toeliminatefromresidus)z∣=1φ(2)dz=2iπRes(φ,z1)wehaveφ(z)=4i(a1)(zz1)(zz2)Res(φ,z1)=4i(a1)(z1z2)=4i(a1)(z11z1)=4iz1(a1)(z121)=4i1a1+a(a1)((1a)2(1+a)21)=4i(1a)(a1)(1+a){(1a)2(1+a)2}(1+a)2=4ia2a+1a2a1=4i4a=iaz∣=1φ(z)dz=2iπ{ia}=2πaf(a)=2πawitha>1case20<a<1z11=1a1+a1=1a1a1+a=2a1+a<0z1∣<1andz2∣>1sothevalueoff(a)dontchangeandf(a)=2πa.
Commented by abdo mathsup 649 cc last updated on 20/May/18
we have f^′ (a) = ∫_0 ^(2π)    (∂/∂a){      (1/(a cos^2 t +sin^2 t))}dt  = − ∫_0 ^(2π)     ((cos^2 t)/((acos^2 t +sin^2 t)^2 ))dt =−g(a) ⇒  g(a) =−f^′ (a)  or  f(a)= ((2π)/( (√a))) ⇒f^′ (a) =2π{ −((((√a))^′ )/a)}  =−2π  (1/(2a(√a))) = ((−π)/(a(√a))) ⇒  g(a) = −(π/(a(√a))) .
wehavef(a)=02πa{1acos2t+sin2t}dt=02πcos2t(acos2t+sin2t)2dt=g(a)g(a)=f(a)orf(a)=2πaf(a)=2π{(a)a}=2π12aa=πaag(a)=πaa.

Leave a Reply

Your email address will not be published. Required fields are marked *