Menu Close

1-find-f-a-0-dx-x-4-a-with-a-gt-0-2-find-g-a-0-dx-x-4-a-2-3-find-value-of-integrals-0-dx-x-4-1-0-dx-2x-4-8-0-dx-x-4-1-2-an




Question Number 85160 by mathmax by abdo last updated on 19/Mar/20
1) find f(a) =∫_0 ^∞   (dx/(x^4  +a)) with a>0  2) find g(a)=∫_0 ^∞   (dx/((x^4  +a)^2 ))  3) find value of integrals   ∫_0 ^∞   (dx/(x^4  +1)) ,∫_0 ^∞  (dx/(2x^4  +8))  ∫_0 ^∞  (dx/((x^4  +1)^2 )) and ∫_0 ^∞   (dx/((2x^4 +8)^2 ))
1)findf(a)=0dxx4+awitha>02)findg(a)=0dx(x4+a)23)findvalueofintegrals0dxx4+1,0dx2x4+80dx(x4+1)2and0dx(2x4+8)2
Commented by mathmax by abdo last updated on 19/Mar/20
1) f(a)=∫_0 ^∞  (dx/(x^4  +a))  =_(x=^4 (√a)t)    ∫_0 ^∞   (((^4 (√a))dt)/(a(1+t^4 ))) =(1/a^(1−(1/4)) )∫_0 ^∞   (dt/(t^4  +1))  =(1/a^(3/4) ) ∫_0 ^∞   (dt/(t^4  +1))  changement  t=u^(1/4)  give  ∫_0 ^∞   (dt/(t^4  +1)) =(1/4)∫_0 ^∞  (u^((1/4)−1) /(1+u))du =(1/4)×(π/(sin((π/4)))) =(π/(4×((√2)/2))) =(π/(2(√2))) ⇒  f(a)=(π/(2(√2)))a^(−(3/4))   2)we have f^′ (a)=−∫_0 ^∞   (dx/((x^4  +a)^2 )) =−g(a) ⇒g(a)=−f^′ (a)  g(a)=−(π/(2(√2)))×(((−3)/4))a^(((−3)/(4 ))−1)  =((3π)/(8(√2))) a^(−(7/4))
1)f(a)=0dxx4+a=x=4at0(4a)dta(1+t4)=1a1140dtt4+1=1a340dtt4+1changementt=u14give0dtt4+1=140u1411+udu=14×πsin(π4)=π4×22=π22f(a)=π22a342)wehavef(a)=0dx(x4+a)2=g(a)g(a)=f(a)g(a)=π22×(34)a341=3π82a74
Commented by mathmax by abdo last updated on 19/Mar/20
3) ∫_0 ^∞   (dx/(x^4  +1)) =f(1) =(π/(2(√2)))  ∫_0 ^∞   (dx/(2x^4  +8)) =(1/2)∫_0 ^∞   (dx/(x^4  +4)) =(1/2)f(4) =(π/(4(√2)))(4)^(−(3/4))   =(π/(4(√2)4^(3/4) )) =(π/(4^(7/4) (√2))) =(π/(2^(7/2) (√2))) =(π/(8×2)) =(π/(16))  ∫_0 ^∞   (dx/((x^4  +1)^2 )) =g(1)=((3π(√2))/(16))
3)0dxx4+1=f(1)=π220dx2x4+8=120dxx4+4=12f(4)=π42(4)34=π42434=π4742=π2722=π8×2=π160dx(x4+1)2=g(1)=3π216
Answered by mind is power last updated on 19/Mar/20
x=(√((√a)tg(t)))⇒  f(a)=∫_0 ^(π/2) (((√(√a))(1+tg^2 (t)))/(2(√(tg(t))))).(dt/(a(1+tg^2 (t))))  =(1/(2a^(3/4) )).∫_0 ^(π/2) cos^(1/2) (t)sin^((−1)/2) (t)dt  =(1/(2a^(3/4) )).((β((3/4),(1/4)))/2)=(1/(4a^(3/4) )).((Γ((1/4))Γ((3/4)))/(Γ(1)))=(π/(4a^(3/4) sin((π/4))))  =((π(√2))/(4a^(3/4) ))=f(a)  g(a)=−f′(a)=((3π(√2))/(16a^(7/4) )).  ∫_0 ^(+∞) (dx/(x^4 +1))=f(1)=((π(√2))/4)=(π/(2(√2)))  ∫_0 ^(+∞) (dx/(2x^4 +8))=((f(4))/2)=((π(√2))/(8(2^(3/2) )))=(π/(16))  ∫(dx/((1+x^4 )^2 ))=g(1)=−f′(1)=((3π(√2))/(16))  ∫_0 ^(+∞) (dx/((2x^4 +8)^2 ))=(1/4)g(4)=−((f′(4))/4)=((3π(√2))/(64.4^(7/4) ))  =((3π)/(512))
x=atg(t)f(a)=0π2a(1+tg2(t))2tg(t).dta(1+tg2(t))=12a34.0π2cos12(t)sin12(t)dt=12a34.β(34,14)2=14a34.Γ(14)Γ(34)Γ(1)=π4a34sin(π4)=π24a34=f(a)g(a)=f(a)=3π216a74.0+dxx4+1=f(1)=π24=π220+dx2x4+8=f(4)2=π28(232)=π16dx(1+x4)2=g(1)=f(1)=3π2160+dx(2x4+8)2=14g(4)=f(4)4=3π264.474=3π512
Commented by mathmax by abdo last updated on 19/Mar/20
thank you sir.
thankyousir.
Commented by mind is power last updated on 19/Mar/20
withe pleasur
withepleasur

Leave a Reply

Your email address will not be published. Required fields are marked *