Question Number 85160 by mathmax by abdo last updated on 19/Mar/20
$$\left.\mathrm{1}\right)\:{find}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:{with}\:{a}>\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{find}\:{g}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} } \\ $$$$\left.\mathrm{3}\right)\:{find}\:{value}\:{of}\:{integrals}\:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:,\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} \:+\mathrm{8}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:{and}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{4}} +\mathrm{8}\right)^{\mathrm{2}} } \\ $$
Commented by mathmax by abdo last updated on 19/Mar/20
$$\left.\mathrm{1}\right)\:{f}\left({a}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{{x}^{\mathrm{4}} \:+{a}}\:\:=_{{x}=^{\mathrm{4}} \sqrt{{a}}{t}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left(^{\mathrm{4}} \sqrt{{a}}\right){dt}}{{a}\left(\mathrm{1}+{t}^{\mathrm{4}} \right)}\:=\frac{\mathrm{1}}{{a}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}} }\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{4}} \:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{{a}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:\:{changement}\:\:{t}={u}^{\frac{\mathrm{1}}{\mathrm{4}}} \:{give} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{{t}^{\mathrm{4}} \:+\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\infty} \:\frac{{u}^{\frac{\mathrm{1}}{\mathrm{4}}−\mathrm{1}} }{\mathrm{1}+{u}}{du}\:=\frac{\mathrm{1}}{\mathrm{4}}×\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{4}}\right)}\:=\frac{\pi}{\mathrm{4}×\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${f}\left({a}\right)=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}{a}^{−\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{f}^{'} \left({a}\right)=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+{a}\right)^{\mathrm{2}} }\:=−{g}\left({a}\right)\:\Rightarrow{g}\left({a}\right)=−{f}^{'} \left({a}\right) \\ $$$${g}\left({a}\right)=−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}}×\left(\frac{−\mathrm{3}}{\mathrm{4}}\right){a}^{\frac{−\mathrm{3}}{\mathrm{4}\:}−\mathrm{1}} \:=\frac{\mathrm{3}\pi}{\mathrm{8}\sqrt{\mathrm{2}}}\:{a}^{−\frac{\mathrm{7}}{\mathrm{4}}} \\ $$
Commented by mathmax by abdo last updated on 19/Mar/20
$$\left.\mathrm{3}\right)\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{1}}\:={f}\left(\mathrm{1}\right)\:=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} \:+\mathrm{8}}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{{x}^{\mathrm{4}} \:+\mathrm{4}}\:=\frac{\mathrm{1}}{\mathrm{2}}{f}\left(\mathrm{4}\right)\:=\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}}\left(\mathrm{4}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} \\ $$$$=\frac{\pi}{\mathrm{4}\sqrt{\mathrm{2}}\mathrm{4}^{\frac{\mathrm{3}}{\mathrm{4}}} }\:=\frac{\pi}{\mathrm{4}^{\frac{\mathrm{7}}{\mathrm{4}}} \sqrt{\mathrm{2}}}\:=\frac{\pi}{\mathrm{2}^{\frac{\mathrm{7}}{\mathrm{2}}} \sqrt{\mathrm{2}}}\:=\frac{\pi}{\mathrm{8}×\mathrm{2}}\:=\frac{\pi}{\mathrm{16}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{4}} \:+\mathrm{1}\right)^{\mathrm{2}} }\:={g}\left(\mathrm{1}\right)=\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{16}} \\ $$
Answered by mind is power last updated on 19/Mar/20
$${x}=\sqrt{\sqrt{{a}}{tg}\left({t}\right)}\Rightarrow \\ $$$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{\sqrt{{a}}}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right)}{\mathrm{2}\sqrt{{tg}\left({t}\right)}}.\frac{{dt}}{{a}\left(\mathrm{1}+{tg}^{\mathrm{2}} \left({t}\right)\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}^{\frac{\mathrm{3}}{\mathrm{4}}} }.\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}^{\frac{\mathrm{1}}{\mathrm{2}}} \left({t}\right){sin}^{\frac{−\mathrm{1}}{\mathrm{2}}} \left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{a}^{\frac{\mathrm{3}}{\mathrm{4}}} }.\frac{\beta\left(\frac{\mathrm{3}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{4}{a}^{\frac{\mathrm{3}}{\mathrm{4}}} }.\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}{\Gamma\left(\mathrm{1}\right)}=\frac{\pi}{\mathrm{4}{a}^{\frac{\mathrm{3}}{\mathrm{4}}} {sin}\left(\frac{\pi}{\mathrm{4}}\right)} \\ $$$$=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}{a}^{\frac{\mathrm{3}}{\mathrm{4}}} }={f}\left({a}\right) \\ $$$${g}\left({a}\right)=−{f}'\left({a}\right)=\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{16}{a}^{\frac{\mathrm{7}}{\mathrm{4}}} }. \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{{x}^{\mathrm{4}} +\mathrm{1}}={f}\left(\mathrm{1}\right)=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}=\frac{\pi}{\mathrm{2}\sqrt{\mathrm{2}}} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\mathrm{2}{x}^{\mathrm{4}} +\mathrm{8}}=\frac{{f}\left(\mathrm{4}\right)}{\mathrm{2}}=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{8}\left(\mathrm{2}^{\frac{\mathrm{3}}{\mathrm{2}}} \right)}=\frac{\pi}{\mathrm{16}} \\ $$$$\int\frac{{dx}}{\left(\mathrm{1}+{x}^{\mathrm{4}} \right)^{\mathrm{2}} }={g}\left(\mathrm{1}\right)=−{f}'\left(\mathrm{1}\right)=\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{16}} \\ $$$$\int_{\mathrm{0}} ^{+\infty} \frac{{dx}}{\left(\mathrm{2}{x}^{\mathrm{4}} +\mathrm{8}\right)^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{4}}{g}\left(\mathrm{4}\right)=−\frac{{f}'\left(\mathrm{4}\right)}{\mathrm{4}}=\frac{\mathrm{3}\pi\sqrt{\mathrm{2}}}{\mathrm{64}.\mathrm{4}^{\frac{\mathrm{7}}{\mathrm{4}}} } \\ $$$$=\frac{\mathrm{3}\pi}{\mathrm{512}} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 19/Mar/20
$${thank}\:{you}\:{sir}. \\ $$
Commented by mind is power last updated on 19/Mar/20
$${withe}\:{pleasur} \\ $$