Menu Close

1-find-f-a-0-pi-2-dt-1-a-cost-2-find-A-0-pi-2-dt-1-sin-cost-




Question Number 36938 by maxmathsup by imad last updated on 07/Jun/18
1) find   f(a) = ∫_0 ^(π/2)    (dt/(1+a cost))  2) find A(θ) =∫_0 ^(π/2)     (dt/(1+sinθ cost))
1)findf(a)=0π2dt1+acost2)findA(θ)=0π2dt1+sinθcost
Commented by math khazana by abdo last updated on 09/Jun/18
1) changemnt tan((t/2)) =x give  f(a) = ∫_0 ^1    (1/(1+a ((1−x^2 )/(1+x^2 ))))  ((2dx)/(1+x^2 ))  = 2 ∫_0 ^1      (dx/(1+x^2  +a −ax^2 )) = 2 ∫_0 ^1    (dx/((1−a)x^2  +1+a))  = (2/(1−a))∫_0 ^1       (dx/(x^2  +((1+a)/(1−a))))  case1  ((1+a)/(1−a))> o ⇒∣a∣<1  we get by chang.x=(√((1+a)/(1−a))) u  f(a) = (2/(1−a)) ∫_0 ^(√((1−a)/(1+a)))       (1/(((1+a)/(1−a))(1+u^2 ))) (√((1+a)/(1−a))) du  = (2/(1−a)) ((√(1−a))/( (√(1+a))))  [arctan(u)]_0 ^(√((1−a)/(1+a)))   = (2/( (√(1−a^2 ))))  arctan((√((1−a)/(1+a))))  case 2 if  ((1+a)/(1−a))<0 ⇒ ∣a∣>1  ∫_0 ^1     (dx/(x^2  +((1+a)/(1−a)))) =∫_0 ^1     (dx/(x^2  −((a+1)/(a−1))))  =_(x =(√((a+1)/(a−1))) u)     ∫_0 ^(√((a−1)/(a+1)))      (1/(((a+1)/(a−1))(u^2 −1)))  (√((a+1)/(a−1))) du  =(1/2)((√(a−1))/( (√(a+1))))  ∫_0 ^(√((a−1)/(a+1)))     { (1/(u−1)) −(1/(u+1))}du  = ((√(a−1))/(2(√(a+1)))) [ln∣((u−1)/(u+1))∣]_0 ^(√((a−1)/(a+1)))   =((√(a−1))/(2(√(a+1)))) ln∣  (((√((a−1)/(a+1))) −1)/( (√((a−1)/(a+1))) +1))∣ ⇒  f(a) = (2/(1−a)) ((√(a−1))/(2(√(a+1)))) ln∣ (((√((a−1)/(a+1))) −1)/( (√((a−1)/(a+1))) +1))∣  = ((−1)/( (√(a^2  −1))))ln∣ (((√((a−1)/(a+1))) −1)/( (√((a−1)/(a+1))) +1)) ∣
1)changemnttan(t2)=xgivef(a)=0111+a1x21+x22dx1+x2=201dx1+x2+aax2=201dx(1a)x2+1+a=21a01dxx2+1+a1acase11+a1a>o⇒∣a∣<1wegetbychang.x=1+a1auf(a)=21a01a1+a11+a1a(1+u2)1+a1adu=21a1a1+a[arctan(u)]01a1+a=21a2arctan(1a1+a)case2if1+a1a<0a∣>101dxx2+1+a1a=01dxx2a+1a1=x=a+1a1u0a1a+11a+1a1(u21)a+1a1du=12a1a+10a1a+1{1u11u+1}du=a12a+1[lnu1u+1]0a1a+1=a12a+1lna1a+11a1a+1+1f(a)=21aa12a+1lna1a+11a1a+1+1=1a21lna1a+11a1a+1+1
Commented by math khazana by abdo last updated on 09/Jun/18
2) we have ∣sinθ∣≤1  so if ∣sinθ∣ <1  ∫_0 ^(π/2)      (dt/(1+cosθ cost))=f(sinθ)  =(2/( (√(1−sin^2 θ)))) arctan{ (√((1−sinθ)/(1+sinθ)))}  = (2/(∣cosθ∣)) arctan(√((1−sinθ)/(1+sinθ)))
2)wehavesinθ∣⩽1soifsinθ<10π2dt1+cosθcost=f(sinθ)=21sin2θarctan{1sinθ1+sinθ}=2cosθarctan1sinθ1+sinθ

Leave a Reply

Your email address will not be published. Required fields are marked *