Menu Close

1-find-f-x-0-1-ln-1-xt-3-dt-with-x-lt-1-2-calculate-0-1-ln-2-t-3-dt-




Question Number 45635 by maxmathsup by imad last updated on 14/Oct/18
1)find f(x)=∫_0 ^1 ln(1+xt^3 )dt  with  ∣x∣<1  2) calculate ∫_0 ^1 ln(2+t^3 )dt .
1)findf(x)=01ln(1+xt3)dtwithx∣<12)calculate01ln(2+t3)dt.
Commented by maxmathsup by imad last updated on 17/Oct/18
1) changement^3 (√x)t  =u  give   f(x)= ∫_0 ^3_(√x)  ln(1+u^3 ) (du/((^3 (√x)))) =(1/((^3 (√x)))) ∫_0 ^3_(√x)    ln(1+u^3 )du but we have proved that  ∫ ln(1+x^3 )dx =xln(1+x^3 )−3x +ln∣x+1∣ −(1/2)ln(x^2 −x+1) +(√3)arctan(((2x−1)/( (√3))))  f(x)= (1/((^3 (√x))))[uln(1+u^3 )−3u +ln∣u+1∣−(1/2)ln(u^2 −u+1)+(√3)arctan(((2x−1)/( (√3))))]_0 ^3_(√x)    =(1/((^3 (√x)))){^3 (√x)ln(1+x)−3^ (^3 (√x))+ln∣1+^3 (√x)∣−(1/2)ln{ u^(2/3) −^3 (√x)+1}  +(√3)arctan(((2(^3 (√x))−1)/( (√3)))) +((π(√3))/6)} .
1)changement3xt=ugivef(x)=03xln(1+u3)du(3x)=1(3x)03xln(1+u3)dubutwehaveprovedthatln(1+x3)dx=xln(1+x3)3x+lnx+112ln(x2x+1)+3arctan(2x13)f(x)=1(3x)[uln(1+u3)3u+lnu+112ln(u2u+1)+3arctan(2x13)]03x=1(3x){3xln(1+x)3(3x)+ln1+3x12ln{u233x+1}+3arctan(2(3x)13)+π36}.
Commented by maxmathsup by imad last updated on 17/Oct/18
let A =∫_0 ^1 ln(2+t^3 )dt ⇒ A = ∫_0 ^1 ln{2(1 +(1/2)t^3 )}dt  =ln(2) +∫_0 ^1 ln(1+(1/2)t^3 )dt  =ln(2)+f((1/2)) =ln(2) +^3 (√2){^3 (√2)ln((3/2))−3(^3 (√2)) +ln∣1+^3 (√2)∣  −(1/2)ln{  2^(−(2/3)) −(1/((^3 (√x)))) +1} +(√3)arctan((((2/((^3 (√2))))−1)/( (√3))))+((π(√3))/6)} .
letA=01ln(2+t3)dtA=01ln{2(1+12t3)}dt=ln(2)+01ln(1+12t3)dt=ln(2)+f(12)=ln(2)+32{32ln(32)3(32)+ln1+3212ln{2231(3x)+1}+3arctan(2(32)13)+π36}.

Leave a Reply

Your email address will not be published. Required fields are marked *