Menu Close

1-find-F-x-0-e-at-e-bt-t-sin-xt-dt-with-a-gt-0-b-gt-0-




Question Number 34315 by prof Abdo imad last updated on 03/May/18
1) find  F(x)= ∫_0 ^(+∞)   ((e^(−at)  −e^(−bt) )/t)sin(xt)dt  with a>0 ,b>0 .
1)findF(x)=0+eatebttsin(xt)dtwitha>0,b>0.
Commented by math khazana by abdo last updated on 05/May/18
we have F^′ (x) = ∫_0 ^∞   (e^(−at)  −e^(−bt) ) cos(xt)dt  =Re( ∫_0 ^∞   (e^(−at)  −e^(−bt) )e^(ixt) dt)  =Re( ∫_0 ^∞   (e^((−a +ix)t)  −e^((−b +ix)t) )dt  but  ∫_0 ^∞    e^((−a+ix)t) dt =  [ (1/(−a +ix)) e^((−1+ix)t) ]_0 ^(+∞)   = (1/(−a +ix)) =((−1)/(a−ix)) =−((a+ix)/(a^2  +x^2 ))  by the same manner  ∫_0 ^∞   e^((−b+ix)t) dt  = −((b +ix)/(b^2  +x^2 )) ⇒  F^′ (x) = Re( ((b+ix)/(b^2  +x^2 )) −((a+ix)/(a^2  +x^2 )))  =(b/(b^2 +x^2 )) − (a/(a^2  +x^2 )) ⇒ F(x)= ∫_0 ^x  (b/(b^2  +t^2 ))dt  −∫_0 ^x   (a/(a^2  +t^2 ))dt +λ   but  ∫_0 ^x    (b/(b^2  +t^2 ))dt =_(t=bu)   ∫_0 ^(x/b)    (b/(b^2 (1+u^2 ))) bdu  = arctan((x/b)) ⇒F(x)= arctan((x/b)) −arctan((x/a)) +λ  λ =F(0) ⇒F(x)=arctan((x/b)) −arctan((x/a)) .
wehaveF(x)=0(eatebt)cos(xt)dt=Re(0(eatebt)eixtdt)=Re(0(e(a+ix)te(b+ix)t)dtbut0e(a+ix)tdt=[1a+ixe(1+ix)t]0+=1a+ix=1aix=a+ixa2+x2bythesamemanner0e(b+ix)tdt=b+ixb2+x2F(x)=Re(b+ixb2+x2a+ixa2+x2)=bb2+x2aa2+x2F(x)=0xbb2+t2dt0xaa2+t2dt+λbut0xbb2+t2dt=t=bu0xbbb2(1+u2)bdu=arctan(xb)F(x)=arctan(xb)arctan(xa)+λλ=F(0)F(x)=arctan(xb)arctan(xa).
Commented by math khazana by abdo last updated on 08/May/18
we know that arctan α −arctanβ =arctan(((α−β)/(1+αβ)))  ⇒F(x) = arctan((((x/b) −(x/a))/(1+(x^2 /(ab)))))  = arctan(((ax−bx)/(x^2   +ab)) ) .
weknowthatarctanαarctanβ=arctan(αβ1+αβ)F(x)=arctan(xbxa1+x2ab)=arctan(axbxx2+ab).

Leave a Reply

Your email address will not be published. Required fields are marked *