1-find-f-x-0-pi-4-sint-2-x-cos-2t-dt-2-find-g-x-0-pi-4-sint-sin-2t-2-x-cos-2t-2-dx-3-find-the-value-of-0-pi-4-sint-2-3-cos-2t-dt-and-0-pi-4-sin-t- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 49635 by maxmathsup by imad last updated on 08/Dec/18 1)findf(x)=∫0π4sint2+xcos(2t)dt2)findg(x)=∫0π4sintsin(2t(2+xcos(2t))2dx3)findthevalueof∫0π4sint2+3cos(2t)dtand∫0π4sin(t)sin(2t)(2+3cos(2t))2dt Commented by Abdo msup. last updated on 15/Dec/18 1)wehavef(x)=∫0π4sint2+x(2cos2t−1)dt=∫0π4sint2xcos2t+2−xdt=cost=u∫112−du2xu2+2−x=−∫112du2x(u2+2−x2x)=12x∫221duu2+2−x2xif2−x2x>0wedothechangementu=2−x2xαf(x)=12x∫222x2−x2x2−x12−x2x(1+α2)2−x2xdα=12−x2−x2x[arctan(α)]222x2−x2x2−xf(x)=1(2−x)2x{arctan(2x2−x)−arctan(222x2−x)}if2−x2x<0wegetf(x)=12x∫221duu2−x−22xandwedothechangementu=x−22xαandthatleadtof(x)=12x∫22x−22xx−22x1x−22x(α2−1)x−22xdα=1(x−2)2x12∫....{1α−1−1α+1}dα=122x(x−2)[ln∣α−1α+1∣]22x−22xx−22x=122x(x−2){ln∣x−22x−1x−22x+1∣−ln∣22x−22x−122x−22x+1∣. Answered by Smail last updated on 09/Dec/18 f(x)=∫0π/4sint2+xcos(2t)dt=∫0π/4sint2+x(2cos2(t)−1)dtu=cost⇒du=−sintdtf(x)=−∫12/2du2+2xu2−x=−∫11/2du(2−x)(2xu22−x+1)y=2x2−xu⇒du=2−x2xdyf(x)=−12−x×2−x2x∫2x/(2−x)x/(2−x)dyy2+1=−12x(2−x)[tan−1(x2−x)−tan−1(2x2−x)] Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: sin-2-ln-x-dx-Next Next post: 1-Given-P-n-1-2n-1-P-n-2n-1-3-5-find-n-2-in-how-many-ways-can-6-persons-stand-in-a-queue-3-how-many-different-4-letter-words-can-be-formed-by-using-letters-of-EDUCATIO Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.