Menu Close

1-find-f-x-0-pi-4-sint-2-x-cos-2t-dt-2-find-g-x-0-pi-4-sint-sin-2t-2-x-cos-2t-2-dx-3-find-the-value-of-0-pi-4-sint-2-3-cos-2t-dt-and-0-pi-4-sin-t-




Question Number 49635 by maxmathsup by imad last updated on 08/Dec/18
1)find f(x) =∫_0 ^(π/4)   ((sint)/(2+x cos(2t)))dt  2) find g(x) =∫_0 ^(π/4)   ((sint sin(2t)/((2+x cos(2t))^2 ))dx  3) find the value of ∫_0 ^(π/4)    ((sint)/(2+3 cos(2t)))dt  and ∫_0 ^(π/4)  ((sin(t)sin(2t))/((2+3cos(2t))^2 ))dt
1)findf(x)=0π4sint2+xcos(2t)dt2)findg(x)=0π4sintsin(2t(2+xcos(2t))2dx3)findthevalueof0π4sint2+3cos(2t)dtand0π4sin(t)sin(2t)(2+3cos(2t))2dt
Commented by Abdo msup. last updated on 15/Dec/18
1) we have f(x) =∫_0 ^(π/4)    ((sint)/(2+x(2cos^2 t−1)))dt  =∫_0 ^(π/4)    ((sint)/(2xcos^2 t +2−x))dt =_(cost =u)       ∫_1 ^(1/( (√2)))       ((−du)/(2xu^2  +2−x))  =−∫_1 ^(1/( (√2)))       (du/(2x(u^2  +((2−x)/(2x))))) =(1/(2x)) ∫_((√2)/2) ^1      (du/(u^2  +((2−x)/(2x))))  if ((2−x)/(2x)) >0  we do the changement u=(√((2−x)/(2x)))α  f(x)=(1/(2x)) ∫_(((√2)/2)(√((2x)/(2−x)))) ^(√((2x)/(2−x)))      (1/(((2−x)/(2x))(1+α^2 ))) (√((2−x)/(2x)))dα  =(1/(2−x))(√((2−x)/(2x)))  [arctan(α)]_(((√2)/2)(√((2x)/(2−x)))) ^(√((2x)/(2−x)))   f(x)= (1/( (√((2−x)2x)))) { arctan((√((2x)/(2−x))))−arctan(((√2)/2)(√((2x)/(2−x))))}  if ((2−x)/(2x))<0  we get f(x)=(1/(2x)) ∫_((√2)/2) ^1     (du/(u^2 −((x−2)/(2x)))) and wedo  the changement u=(√((x−2)/(2x)))α  and that lead to   f(x)=(1/(2x)) ∫_(((√2)/2)(√((x−2)/(2x)))) ^(√((x−2)/(2x)))        (1/(((x−2)/(2x))(α^2 −1)))(√((x−2)/(2x)))dα  = (1/( (√((x−2)2x)))) (1/2)∫_(..) ^(..)   {(1/(α−1)) −(1/(α+1))}dα  =(1/(2(√(2x(x−2)))))[ln∣((α−1)/(α+1))∣]_(((√2)/2)(√((x−2)/(2x)))) ^(√((x−2)/(2x)))   =(1/(2(√(2x(x−2))))) {ln∣(((√((x−2)/(2x)))−1)/( (√((x−2)/(2x)))+1))∣−ln∣((((√2)/2)(√((x−2)/(2x)))−1)/(((√2)/2)(√((x−2)/(2x)))+1))∣.
1)wehavef(x)=0π4sint2+x(2cos2t1)dt=0π4sint2xcos2t+2xdt=cost=u112du2xu2+2x=112du2x(u2+2x2x)=12x221duu2+2x2xif2x2x>0wedothechangementu=2x2xαf(x)=12x222x2x2x2x12x2x(1+α2)2x2xdα=12x2x2x[arctan(α)]222x2x2x2xf(x)=1(2x)2x{arctan(2x2x)arctan(222x2x)}if2x2x<0wegetf(x)=12x221duu2x22xandwedothechangementu=x22xαandthatleadtof(x)=12x22x22xx22x1x22x(α21)x22xdα=1(x2)2x12....{1α11α+1}dα=122x(x2)[lnα1α+1]22x22xx22x=122x(x2){lnx22x1x22x+1ln22x22x122x22x+1.
Answered by Smail last updated on 09/Dec/18
f(x)=∫_0 ^(π/4) ((sint)/(2+xcos(2t)))dt  =∫_0 ^(π/4) ((sint)/(2+x(2cos^2 (t)−1)))dt  u=cost⇒du=−sintdt  f(x)=−∫_1 ^((√2)/2) (du/(2+2xu^2 −x))  =−∫_1 ^(1/(√2)) (du/((2−x)(((2xu^2 )/(2−x))+1)))  y=(√((2x)/(2−x)))u⇒du=(√((2−x)/(2x)))dy  f(x)=−(1/(2−x))×(√((2−x)/(2x)))∫_(√(2x/(2−x))) ^(√(x/(2−x))) (dy/(y^2 +1))  =−(1/( (√(2x(2−x)))))[tan^(−1) ((√(x/(2−x))))−tan^(−1) ((√((2x)/(2−x))))]
f(x)=0π/4sint2+xcos(2t)dt=0π/4sint2+x(2cos2(t)1)dtu=costdu=sintdtf(x)=12/2du2+2xu2x=11/2du(2x)(2xu22x+1)y=2x2xudu=2x2xdyf(x)=12x×2x2x2x/(2x)x/(2x)dyy2+1=12x(2x)[tan1(x2x)tan1(2x2x)]

Leave a Reply

Your email address will not be published. Required fields are marked *