Menu Close

1-find-f-x-0-pi-ln-2-x-cos-d-2-calculate-0-pi-ln-2-cos-d-




Question Number 38718 by maxmathsup by imad last updated on 28/Jun/18
1) find f(x)=∫_0 ^π  ln(2+x cosθ)dθ  2) calculate ∫_0 ^π  ln(2  +cosθ)dθ
1)findf(x)=0πln(2+xcosθ)dθ2)calculate0πln(2+cosθ)dθ
Commented by math khazana by abdo last updated on 30/Jun/18
1) we have f^′ (x)= ∫_0 ^π    ((cosθ)/(2+x cosθ))dθ changement  tan((θ/2))=t ⇒f^′ (x)=∫_0 ^∞     (((1−t^2 )/(1+t^2 ))/(2+x((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  f^′ (x) = 2∫_0 ^∞      ((1−t^2 )/((1+t^2 )(2+2t^2  +x−xt^2 )))dt  =2 ∫_0 ^∞      ((1−t^2 )/((1+t^2 ){(2−x)t^2  +x+2}))dt let   f^′ (x) =∫_(−∞) ^(+∞)     ((1−t^2 )/((1+t^2 ){ (2−x)t^(2 )  +x+2})) dt   let  ϕ(z)= ((1−z^2 )/((z^2 +1){ (2−x)z^2  +x+2})) if x≠2  ϕ(z) = ((1−z^2 )/((2−x)(z^2 +1){ z^2  +((2+x)/(2−x))}))  case 1   ((2+x)/(2−x))>0 ⇒  ϕ(z)= ((1−z^2 )/((2−x)(z−i)(z+i)(z−i(√((2+x)/(2−x))))(z+i(√((2+x)/(2−x))))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,i(√((2+x)/(2−x))))}  Res(ϕ,i) = (2/((2−x)(2i)(−1 +((2+x)/(2−x)))))  = ((−i(2−x))/((2−x)(−2+x+2+x))) =((−i)/(2x))  Res(ϕ,i(√((2+x)/(2−x)))) =  ((1 +((2+x)/(2−x)))/((2−x)(−((2+x)/(2−x)) +1)2i(√((2+x)/(2−x)))))  =  (4/((2−x)^2 (((−2−x+2−x)/(2−x)))2i(√((2+x)/(2−x)))))  = ((−2i)/((2−x)(−2x)((√(2+x))/( (√(2−x)))))) = (i/( (√(4−x^2 ))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((−i)/(2x)) + (i/( (√(4−x^2 ))))}  =(π/x) +((2π)/( (√(4−x^2 )))) =f^′ (x) ⇒  f(x) =πln∣x∣  + 2π ∫   (dx/( (√(4−x^2 ))))  +c  changement  x=2u give ∫   (dx/( (√(4−x^2 )))) = ∫   ((2du)/(2(√(1−u^2 ))))  = arcsin((x/2)) ⇒f(x)=π ln∣x∣ +2π arcsin((x/2)) +c  f(1) =2π (π/2) +c = π^2  +c ⇒c=f(1) −π^2  ⇒  f(x) =π ln∣x∣ +2π arcsin((x/2)) +f(1)−π^2  .
1)wehavef(x)=0πcosθ2+xcosθdθchangementtan(θ2)=tf(x)=01t21+t22+x1t21+t22dt1+t2f(x)=201t2(1+t2)(2+2t2+xxt2)dt=201t2(1+t2){(2x)t2+x+2}dtletf(x)=+1t2(1+t2){(2x)t2+x+2}dtletφ(z)=1z2(z2+1){(2x)z2+x+2}ifx2φ(z)=1z2(2x)(z2+1){z2+2+x2x}case12+x2x>0φ(z)=1z2(2x)(zi)(z+i)(zi2+x2x)(z+i2+x2x)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,i2+x2x)}Res(φ,i)=2(2x)(2i)(1+2+x2x)=i(2x)(2x)(2+x+2+x)=i2xRes(φ,i2+x2x)=1+2+x2x(2x)(2+x2x+1)2i2+x2x=4(2x)2(2x+2x2x)2i2+x2x=2i(2x)(2x)2+x2x=i4x2+φ(z)dz=2iπ{i2x+i4x2}=πx+2π4x2=f(x)f(x)=πlnx+2πdx4x2+cchangementx=2ugivedx4x2=2du21u2=arcsin(x2)f(x)=πlnx+2πarcsin(x2)+cf(1)=2ππ2+c=π2+cc=f(1)π2f(x)=πlnx+2πarcsin(x2)+f(1)π2.
Commented by math khazana by abdo last updated on 30/Jun/18
case 2 ((2+x)/(2−x)) <0  we follow the same method..
case22+x2x<0wefollowthesamemethod..
Commented by math khazana by abdo last updated on 30/Jun/18
error from line 15  Res(ϕ,i(√((2+x)/(2−x)))) =  (i/(x(√(4−x^2 )))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ ((−i)/(2x))  +(i/(x(√(4−x^2 ))))}  = (π/x)  −((2π)/(x(√(4−x^2 )))) =f^′ (x) ⇒  f(x) =πln∣x∣  −2π ∫     (dx/(x(√(4−x^2 ))))  .changement  x= 2sint ⇒  ∫   (dx/(x(√(4−x^2 )))) = ∫   ((2cost)/(2sint 2 cost))dt  =(1/2) ∫   (dt/(sint )) then chang.tan((t/2))=u  =(1/2) ∫    (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =(1/2) ∫  (du/u) =(1/2)ln∣tan((t/2)))  =(1/2)ln∣ tan((1/2) arcsin((x/2)))∣⇒  f(x)=πln∣x∣ −πln∣ tan((1/2)arcsin((x/2))∣  +c  f(1) = c ⇒  f(x)=πln∣x∣ −πln∣tan((1/2)arcsin((x/2))∣ + ∫_0 ^π ln(2+cosθ)dθ
errorfromline15Res(φ,i2+x2x)=ix4x2+φ(z)dz=2iπ{i2x+ix4x2}=πx2πx4x2=f(x)f(x)=πlnx2πdxx4x2.changementx=2sintdxx4x2=2cost2sint2costdt=12dtsintthenchang.tan(t2)=u=1212u1+u22du1+u2=12duu=12lntan(t2))=12lntan(12arcsin(x2))∣⇒f(x)=πlnxπlntan(12arcsin(x2)+cf(1)=cf(x)=πlnxπlntan(12arcsin(x2)+0πln(2+cosθ)dθ

Leave a Reply

Your email address will not be published. Required fields are marked *