Question Number 43918 by maxmathsup by imad last updated on 17/Sep/18

Commented by maxmathsup by imad last updated on 19/Sep/18
![1) we have for 0<t≤x<1 ln^′ (1−t) =−(1/(1−t)) =−Σ_(n=0) ^∞ t^n ⇒ ln(1−t) =−Σ_(n=0) ^∞ (1/(n+1))t^(n+1) =−Σ_(n=1) ^∞ (t^n /n) ⇒ f(x) =−∫_0 ^x ln(t)(Σ_(n=1) ^∞ (t^n /n))dt =−Σ_(n=1) ^∞ (1/n) ∫_0 ^x t^n ln(t) dt by parts A_n (x)= ∫_0 ^x t^n ln(t)dt =[(1/(n+1))t^(n+1) ln(t)]_0 ^x −∫_0 ^x (1/(n+1))t^(n+1) (dt/t) =(1/(n+1)) x^(n+1) ln(x) −(1/(n+1))∫_0 ^x t^n dt = (1/(n+1))x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1) ⇒ f(x) =−Σ_(n=1) ^∞ (1/n){ (1/(n+1)) x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1) } = −Σ_(n=1) ^∞ (1/(n(n+1))) x^(n+1) ln(x) +Σ_(n=1) ^∞ (1/(n(n+1)^2 )) x^(n+1) =H(x)−K(x) K(x) =ln(x) Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^(n+1) =ln(x)Σ_(n=1) ^∞ (x^(n+1) /n) −ln(x)Σ_(n=1) ^∞ (x^(n+1) /(n+1)) =xln(x) Σ_(n=1) ^∞ (x^n /n) −ln(x) Σ_(n=2) ^∞ (x^n /n) =−xln(x)ln(1−x) −ln(x)(−ln∣1−x∣−x) =−xln(x)ln∣1−x∣+ln(x)(ln∣1−x∣ +x) =(1−x)ln(x)ln∣1−x∣ +xln(x) .also we have (d/dx)K(x) =Σ_(n=1) ^∞ (1/(n(n+1))) x^n =Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^n =Σ_(n=1) ^∞ (x^n /n) −Σ_(n=1) ^∞ (x^n /(n+1)) =−ln∣1−x∣−Σ_(n=2) ^∞ (x^(n−1) /n) =−ln∣1−x∣ −(1/x) {Σ_(n=1) ^∞ (x^n /n) −x} =−ln∣1−x∣+(1/x)ln∣1−x) +1 =((1/x)−1)ln∣1−x∣ +1 =(((1−x)ln∣1−x∣)/x) +1 ⇒ K(x) = x + ∫ (((1−x)ln∣1−x∣)/x) dx +k ....be continued...](https://www.tinkutara.com/question/Q44009.png)
Commented by maxmathsup by imad last updated on 19/Sep/18

Commented by maxmathsup by imad last updated on 19/Sep/18
