Menu Close

1-find-f-x-0-x-ln-t-ln-1-t-dt-with-0-x-1-2-find-the-value-of-0-1-ln-t-ln-1-t-dt-




Question Number 43918 by maxmathsup by imad last updated on 17/Sep/18
1) find f(x) =∫_0 ^x ln(t)ln(1−t)dt   with 0≤x≤1  2) find the value of ∫_0 ^1 ln(t)ln(1−t)dt .
1)findf(x)=0xln(t)ln(1t)dtwith0x12)findthevalueof01ln(t)ln(1t)dt.
Commented by maxmathsup by imad last updated on 19/Sep/18
1) we have for 0<t≤x<1    ln^′ (1−t) =−(1/(1−t)) =−Σ_(n=0) ^∞  t^n  ⇒  ln(1−t) =−Σ_(n=0) ^∞  (1/(n+1))t^(n+1)  =−Σ_(n=1) ^∞   (t^n /n) ⇒  f(x) =−∫_0 ^x  ln(t)(Σ_(n=1) ^∞  (t^n /n))dt =−Σ_(n=1) ^∞  (1/n) ∫_0 ^x t^n ln(t) dt  by parts  A_n (x)= ∫_0 ^x  t^n ln(t)dt =[(1/(n+1))t^(n+1) ln(t)]_0 ^x  −∫_0 ^x  (1/(n+1))t^(n+1)  (dt/t)  =(1/(n+1)) x^(n+1) ln(x) −(1/(n+1))∫_0 ^x   t^n dt = (1/(n+1))x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1)  ⇒  f(x) =−Σ_(n=1) ^∞  (1/n){ (1/(n+1)) x^(n+1) ln(x)−(1/((n+1)^2 )) x^(n+1) }  = −Σ_(n=1) ^∞   (1/(n(n+1))) x^(n+1) ln(x) +Σ_(n=1) ^∞   (1/(n(n+1)^2 )) x^(n+1)  =H(x)−K(x)  K(x) =ln(x) Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^(n+1)   =ln(x)Σ_(n=1) ^∞   (x^(n+1) /n) −ln(x)Σ_(n=1) ^∞   (x^(n+1) /(n+1))  =xln(x) Σ_(n=1) ^∞  (x^n /n) −ln(x) Σ_(n=2) ^∞   (x^n /n)            =−xln(x)ln(1−x) −ln(x)(−ln∣1−x∣−x)  =−xln(x)ln∣1−x∣+ln(x)(ln∣1−x∣ +x)  =(1−x)ln(x)ln∣1−x∣ +xln(x) .also we have  (d/dx)K(x) =Σ_(n=1) ^∞  (1/(n(n+1))) x^n   =Σ_(n=1) ^∞ {(1/n)−(1/(n+1))}x^n   =Σ_(n=1) ^∞  (x^n /n)  −Σ_(n=1) ^∞  (x^n /(n+1)) =−ln∣1−x∣−Σ_(n=2) ^∞   (x^(n−1) /n)  =−ln∣1−x∣ −(1/x) {Σ_(n=1) ^∞   (x^n /n) −x} =−ln∣1−x∣+(1/x)ln∣1−x) +1  =((1/x)−1)ln∣1−x∣ +1  =(((1−x)ln∣1−x∣)/x) +1 ⇒  K(x) = x + ∫    (((1−x)ln∣1−x∣)/x) dx +k  ....be continued...
1)wehavefor0<tx<1ln(1t)=11t=n=0tnln(1t)=n=01n+1tn+1=n=1tnnf(x)=0xln(t)(n=1tnn)dt=n=11n0xtnln(t)dtbypartsAn(x)=0xtnln(t)dt=[1n+1tn+1ln(t)]0x0x1n+1tn+1dtt=1n+1xn+1ln(x)1n+10xtndt=1n+1xn+1ln(x)1(n+1)2xn+1f(x)=n=11n{1n+1xn+1ln(x)1(n+1)2xn+1}=n=11n(n+1)xn+1ln(x)+n=11n(n+1)2xn+1=H(x)K(x)K(x)=ln(x)n=1{1n1n+1}xn+1=ln(x)n=1xn+1nln(x)n=1xn+1n+1=xln(x)n=1xnnln(x)n=2xnn=xln(x)ln(1x)ln(x)(ln1xx)=xln(x)ln1x+ln(x)(ln1x+x)=(1x)ln(x)ln1x+xln(x).alsowehaveddxK(x)=n=11n(n+1)xn=n=1{1n1n+1}xn=n=1xnnn=1xnn+1=ln1xn=2xn1n=ln1x1x{n=1xnnx}=ln1x+1xln1x)+1=(1x1)ln1x+1=(1x)ln1xx+1K(x)=x+(1x)ln1xxdx+k.becontinued
Commented by maxmathsup by imad last updated on 19/Sep/18
2) ∫_0 ^1 ln(t)ln(1−t)dt  =lim_(x→0)   ∫_0 ^x  ln(t)ln(1−t)dt  =lim_(x→1) { Σ_(n=1) ^∞  (x^(n+1) /((n+1)^2 )) −Σ_(n=1) ^∞ ((x^(n+1) lnx)/(n(n+1)))} =Σ_(n=1) ^∞   (1/((n+1)^2 ))  =Σ_(n=2) ^∞   (1/n^2 ) =(π^2 /6) −1 .
2)01ln(t)ln(1t)dt=limx00xln(t)ln(1t)dt=limx1{n=1xn+1(n+1)2n=1xn+1lnxn(n+1)}=n=11(n+1)2=n=21n2=π261.
Commented by maxmathsup by imad last updated on 19/Sep/18
∫_0 ^1 ln(t)ln(1−t) dt =lim_(x→1) ∫_0 ^x ln(t)ln(1−t)dt =...
01ln(t)ln(1t)dt=limx10xln(t)ln(1t)dt=

Leave a Reply

Your email address will not be published. Required fields are marked *