Menu Close

1-find-g-x-0-pi-2-ln-1-x-2-cos-2-d-with-x-from-R-2-find-the-value-of-0-pi-2-ln-1-2-cos-2-d-and-3-find-the-value-of-A-0-pi-2-ln-1-cos-2-cos-2-d-




Question Number 40661 by math khazana by abdo last updated on 25/Jul/18
1)find  g(x)=∫_0 ^(π/2) ln(1−x^2 cos^2 θ)dθ  with x from R  2) find the value of  ∫_0 ^(π/2) ln(1−2 cos^2 θ)dθ and  3) find the value of    A(α)=∫_0 ^(π/2) ln(1−cos^2 α cos^2 θ)dθ
1)findg(x)=0π2ln(1x2cos2θ)dθwithxfromR2)findthevalueof0π2ln(12cos2θ)dθand3)findthevalueofA(α)=0π2ln(1cos2αcos2θ)dθ
Commented by math khazana by abdo last updated on 04/Aug/18
1) we have g(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ  +∫_0 ^(π/2) ln(1−xcosθ)dθ =h(x)+k(x)  h(x)=∫_0 ^(π/2) ln(1+xcosθ)dθ ⇒  h^′ (x) = ∫_0 ^(π/2)   ((cosθ)/(1+xcosθ)) dθ  =(1/x) ∫_0 ^(π/2)   ((1+xcosθ−1)/(1+xcosθ))dθ=(π/(2x)) −(1/x)∫_0 ^(π/2)   (dθ/(1+xcosθ))  but ∫_0 ^(π/2)   (dθ/(1+xcosθ)) =_(tan((θ/2))=t)   ∫_0 ^1     (1/(1+x((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 ))  = ∫_0 ^1      ((2dt)/(1+t^2  +x−xt^2 )) = ∫_0 ^1   ((2dt)/(1+x +(1−x)t^2 ))  =(2/((1+x))) ∫_0 ^1    (dt/(1+((1−x)/(1+x))t^2 )) if ∣x∣<1 we do the   changement (√((1−x)/(1+x)))t =u ⇒  ∫_0 ^(π/2)     (dθ/(1+xcosθ)) =(2/(1+x)) ∫_0 ^(√((1−x)/(1+x)))      (1/(1+u^2 )) (√((1+x)/(1−x)))du  = (2/( (√(1−x^2 )))) arctan(√((1−x)/(1+x))) ⇒  h(x) = ∫  ((2arctan(√((1−x)/(1+x))))/( (√(1−x^2 )))) dx +c  changement x=cost give  h(x) = ∫   ((2arctan(tan((t/2))))/(sint)) (−sint)dt +c  = −∫ t dt +c =−(t^2 /2) +c =c−(1/2)(arccosx)^2   h(0)=0 =c−(1/2) ⇒c=(1/2) ⇒  ∫_0 ^(π/2) ln(1+xcosθ)dθ =(1/2) −(1/2)(arcosx)^2
1)wehaveg(x)=0π2ln(1+xcosθ)dθ+0π2ln(1xcosθ)dθ=h(x)+k(x)h(x)=0π2ln(1+xcosθ)dθh(x)=0π2cosθ1+xcosθdθ=1x0π21+xcosθ11+xcosθdθ=π2x1x0π2dθ1+xcosθbut0π2dθ1+xcosθ=tan(θ2)=t0111+x1t21+t22dt1+t2=012dt1+t2+xxt2=012dt1+x+(1x)t2=2(1+x)01dt1+1x1+xt2ifx∣<1wedothechangement1x1+xt=u0π2dθ1+xcosθ=21+x01x1+x11+u21+x1xdu=21x2arctan1x1+xh(x)=2arctan1x1+x1x2dx+cchangementx=costgiveh(x)=2arctan(tan(t2))sint(sint)dt+c=tdt+c=t22+c=c12(arccosx)2h(0)=0=c12c=120π2ln(1+xcosθ)dθ=1212(arcosx)2
Commented by math khazana by abdo last updated on 04/Aug/18
  error from line 12 we have  h^′ (x)=(π/(2x)) −(1/x)  (2/( (√(1−x^2 )))) arctan(√((1−x)/(1+x))) ⇒  h(x) =(π/2)ln∣x∣ − ∫    ((2arctan(√((1−x)/(1+x))))/(x(√(1−x^2 )))) dx +c but  changement x =cost give  ∫     ((2 arctan(√((1−x)/(1+x))))/(x(√(1−x^2 )))) dx= −∫   ((2arctan(tan((t/2))))/(costsint))sintdt  =−∫      (t/(cost)) dt   =_(tan((t/2))=u) −∫      ((2arctanu)/((1−u^2 )/(1+u^2 ))) ((2du)/(1+u^2 ))  =−∫   ((arctanu)/(1−u^2 )) du  any way we have  h(x) =(π/2)ln∣x∣ +∫_1 ^x   (t/(cost)) dt +c  c=h(1) =∫_0 ^(π/2) ln(1+cosθ)dθ ⇒  h(x)=(π/2)ln∣x∣ +∫_1 ^x  (t/(cost)) dt  +∫_0 ^(π/2) ln(1+cosθ)dθ  if ∣x∣<1  if ∣x∣>1 we follow the same way
errorfromline12wehaveh(x)=π2x1x21x2arctan1x1+xh(x)=π2lnx2arctan1x1+xx1x2dx+cbutchangementx=costgive2arctan1x1+xx1x2dx=2arctan(tan(t2))costsintsintdt=tcostdt=tan(t2)=u2arctanu1u21+u22du1+u2=arctanu1u2duanywaywehaveh(x)=π2lnx+1xtcostdt+cc=h(1)=0π2ln(1+cosθ)dθh(x)=π2lnx+1xtcostdt+0π2ln(1+cosθ)dθifx∣<1ifx∣>1wefollowthesameway
Commented by math khazana by abdo last updated on 04/Aug/18
let find k(x)=∫_0 ^(π/2) ln(1−xcosθ)dθ  we have g(x)=h(x)+k(x) ⇒k(x)=g(x)−h(x)⇒  k(−x)=g(−x)−h(−x) =g(x)−h(x)=k(x)  because g and h are even so  k(x)=k(−x)=h(x) ⇒  g(x) =2h(x)
letfindk(x)=0π2ln(1xcosθ)dθwehaveg(x)=h(x)+k(x)k(x)=g(x)h(x)k(x)=g(x)h(x)=g(x)h(x)=k(x)becausegandhareevensok(x)=k(x)=h(x)g(x)=2h(x)
Commented by math khazana by abdo last updated on 04/Aug/18
g(x)=πln∣x∣ +2 ∫_1 ^x   (t/(cost)) dt +2 ∫_0 ^(π/2) ln(1+cosθ)dθ .
g(x)=πlnx+21xtcostdt+20π2ln(1+cosθ)dθ.

Leave a Reply

Your email address will not be published. Required fields are marked *