Menu Close

1-find-lim-n-a-1-n-b-1-n-2-n-2-let-0-lt-lt-pi-2-calculate-lim-n-1-2-n-n-cos-n-sin-n-




Question Number 31526 by abdo imad last updated on 09/Mar/18
1)find lim_(n→∞) ( ((a^(1/n)  +b^(1/n) )/2))^n   2) let 0<θ<(π/2) calculate lim_(n→∞)  (1/2^n )(^n (√(cosθ)) +^n (√(sinθ)) )^n
1)findlimn(a1n+b1n2)n2)let0<θ<π2calculatelimn12n(ncosθ+nsinθ)n
Commented by abdo imad last updated on 09/Mar/18
a>0 and b>0.
a>0andb>0.
Commented by abdo imad last updated on 16/Mar/18
1 ) a^(1/n)  =e^((ln(a))/n)  =1+ ((ln(a))/n) +o((1/n))  b^(1/n)  =1 +((ln(b))/n) +o((1/n))⇒ ((a^(1/n)  +b^(1/n) )/2)=((2 +((ln(ab))/n))/2) +o((1/n))  = 1 +((ln(ab))/(2n)) +o((1/n)) ⇒( ((a^(1/n)  +b^(1/n) )/2))^n   ∼ (1+ ((ln(ab))/(2n)))^n  but (1+((ln(ab))/(2n)))^n =e^(nln(1+((ln(ab))/(2n))))  _(n→∞) →((ln(ab))/2)  =ln((√(ab)))  2) let put  u_n  =(1/2^n )(^n (√(cosθ)) +^n (√(sinθ)))^n   u_n =(  (((cosθ)^(1/n)  +(sinθ)^(1/n) )/2))^n  from Q.1)  lim_(n→∞)  u_n  =ln((√(cosθsinθ)))  .
1)a1n=eln(a)n=1+ln(a)n+o(1n)b1n=1+ln(b)n+o(1n)a1n+b1n2=2+ln(ab)n2+o(1n)=1+ln(ab)2n+o(1n)(a1n+b1n2)n(1+ln(ab)2n)nbut(1+ln(ab)2n)n=enln(1+ln(ab)2n)nln(ab)2=ln(ab)2)letputun=12n(ncosθ+nsinθ)nun=((cosθ)1n+(sinθ)1n2)nfromQ.1)limnun=ln(cosθsinθ).

Leave a Reply

Your email address will not be published. Required fields are marked *