Question Number 85162 by mathmax by abdo last updated on 19/Mar/20
$$\left.\mathrm{1}\right){find}\:\int\:{ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$
Commented by mathmax by abdo last updated on 01/Apr/20
$$\left.\mathrm{1}\right)\:{let}\:{f}\left({t}\right)\:=\int\:{ln}\left({t}+\sqrt{{x}}\:+\sqrt{{x}+\mathrm{1}}\right){dx} \\ $$$${we}\:{have}\:{f}^{'} \left({t}\right)\:\int\:\:\:\frac{\mathrm{1}}{{t}+\sqrt{{x}}+\sqrt{{x}+\mathrm{1}}}{dx}\:=_{\sqrt{{x}}={u}} \:\:\int\:\:\:\frac{\mathrm{2}{udu}}{{t}+{u}+\sqrt{{u}^{\mathrm{2}} \:+\mathrm{1}}} \\ $$$$=_{{u}\:={sh}\left(\alpha\right)} \:\:\mathrm{2}\:\int\:\:\frac{{sh}\left(\alpha\right){ch}\left(\alpha\right){d}\alpha}{{t}+{sh}\left(\alpha\right)+{ch}\left(\alpha\right)}\:=\:\int\:\:\:\frac{{sh}\left(\mathrm{2}\alpha\right)}{{t}+{sh}\alpha\:+{ch}\alpha}{d}\alpha \\ $$$$=\int\:\:\frac{\frac{{e}^{\mathrm{2}\alpha} −{e}^{−\alpha} }{\mathrm{2}}}{{t}+\:{e}^{\alpha} }{d}\alpha\:\:=_{{e}^{\alpha} ={z}} \:\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{{z}^{\mathrm{2}} −{z}^{−\mathrm{2}} }{{t}+{z}}\:\frac{{dz}}{{z}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\:\:\frac{{z}^{\mathrm{2}} −{z}^{−\mathrm{2}} }{{z}\left({t}+{z}\right)}{dz}\:=\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{z}^{\mathrm{4}} −\mathrm{1}}{{z}^{\mathrm{3}} \left({t}+{z}\right)}{dz}\:\:{let}\:{decompose} \\ $$$${F}\left({z}\right)\:=\frac{{z}^{\mathrm{4}} −\mathrm{1}}{{z}^{\mathrm{3}} \left({z}+{t}\right)}\Rightarrow{F}\left({z}\right)\:=\frac{{z}^{\mathrm{4}} −\mathrm{1}}{{z}^{\mathrm{4}} +{tz}^{\mathrm{3}} }\:=\frac{{z}^{\mathrm{4}} +{tz}^{\mathrm{3}} −{tz}^{\mathrm{3}} −\mathrm{1}}{{z}^{\mathrm{4}} \:+{tz}^{\mathrm{3}} }\:=\mathrm{1}−\frac{{tz}^{\mathrm{3}} \:+\mathrm{1}}{{z}^{\mathrm{4}} +{tz}^{\mathrm{3}} } \\ $$$${w}\left({z}\right)=\frac{{tz}^{\mathrm{3}\:} +\mathrm{1}}{{z}^{\mathrm{3}} \left({z}+{t}\right)}\:=\frac{{a}}{{z}}+\frac{{b}}{{z}^{\mathrm{2}} }+\frac{{c}}{{z}^{\mathrm{3}} }\:+\frac{{d}}{{z}+{t}} \\ $$$${c}\:=\frac{\mathrm{1}}{{t}}\:\:,\:\:\:\:{d}\:=\frac{\mathrm{1}−{t}^{\mathrm{4}} }{−{t}^{\mathrm{3}} }\:=\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{3}} }\:\Rightarrow{w}\left({z}\right)\:=\frac{{a}}{{z}}+\frac{{b}}{{z}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{tz}^{\mathrm{3}} }\:+\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{3}} \left({z}+{t}\right)} \\ $$$${lim}_{{z}\rightarrow+\infty} \:{zw}\left({z}\right)\:={t}\:={a}\:+{d}\:\Rightarrow{a}\:={t}−{d}\:={t}−\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{3}} }\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\:\Rightarrow \\ $$$${w}\left({z}\right)\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} {z}}\:+\frac{{b}}{{z}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{{tz}^{\mathrm{3}} }\:+\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}^{\mathrm{3}} \left({z}+{t}\right)} \\ $$$${w}\left(\mathrm{1}\right)\:=\mathrm{1}\:\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} }\:+{b}\:+\frac{\mathrm{1}}{{t}}\:+\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}+\mathrm{1}}\:=\frac{\mathrm{1}}{{t}^{\mathrm{3}} }+\frac{\mathrm{1}}{{t}}\:+\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}+\mathrm{1}} \\ $$$$=\frac{{t}+{t}^{\mathrm{3}} }{{t}^{\mathrm{4}} }\:+\frac{{t}^{\mathrm{4}} −\mathrm{1}}{{t}+\mathrm{1}}\:=\frac{\left({t}+{t}^{\mathrm{3}} \right)\left({t}+\mathrm{1}\right)+{t}^{\mathrm{8}} −{t}^{\mathrm{4}} }{{t}^{\mathrm{4}} \left({t}+\mathrm{1}\right)} \\ $$$$=\frac{{t}^{\mathrm{2}} \:+{t}+{t}^{\mathrm{4}} +{t}^{\mathrm{3}} +{t}^{\mathrm{8}} −{t}^{\mathrm{4}} }{{t}^{\mathrm{4}} \left({t}+\mathrm{1}\right)}\:=\frac{{t}^{\mathrm{8}} +{t}^{\mathrm{3}} +{t}^{\mathrm{2}} \:+{t}}{{t}^{\mathrm{4}} \left({t}+\mathrm{1}\right)}\:=\frac{{t}^{\mathrm{7}} \:+{t}^{\mathrm{2}} \:+{t}+\mathrm{1}}{{t}^{\mathrm{3}} \left({t}+\mathrm{1}\right)}\:\Rightarrow \\ $$$${b}=\mathrm{1}−\frac{{t}^{\mathrm{7}} \:+{t}^{\mathrm{2}} \:+{t}+\mathrm{1}}{{t}^{\mathrm{3}} \left({t}+\mathrm{1}\right)}\:{we}\:{have}\:{F}\left({z}\right)=\mathrm{1}−\frac{{a}}{{z}}−\frac{{b}}{{z}^{\mathrm{2}} }−\frac{{c}}{{z}^{\mathrm{3}} }−\frac{{d}}{{z}+{t}}\:\Rightarrow \\ $$$$\int\:{F}\left({z}\right){dz}\:={z}−{aln}\mid{z}\mid+\frac{{b}}{{z}}\:+\frac{{c}}{\mathrm{2}{z}^{\mathrm{2}} }\:−{d}\:{ln}\mid{z}+{t}\mid\:+{C}…{be}\:{continued}… \\ $$