Menu Close

1-find-ln-x-x-1-dx-2-calculate-0-1-ln-x-x-1-dx-




Question Number 85162 by mathmax by abdo last updated on 19/Mar/20
1)find ∫ ln((√x)+(√(x+1)))dx  2) calculate ∫_0 ^1 ln((√x)+(√(x+1)))dx
1)findln(x+x+1)dx2)calculate01ln(x+x+1)dx
Commented by mathmax by abdo last updated on 01/Apr/20
1) let f(t) =∫ ln(t+(√x) +(√(x+1)))dx  we have f^′ (t) ∫   (1/(t+(√x)+(√(x+1))))dx =_((√x)=u)   ∫   ((2udu)/(t+u+(√(u^2  +1))))  =_(u =sh(α))   2 ∫  ((sh(α)ch(α)dα)/(t+sh(α)+ch(α))) = ∫   ((sh(2α))/(t+shα +chα))dα  =∫  (((e^(2α) −e^(−α) )/2)/(t+ e^α ))dα  =_(e^α =z)   (1/2)∫  ((z^2 −z^(−2) )/(t+z)) (dz/z)  =(1/2)∫  ((z^2 −z^(−2) )/(z(t+z)))dz =(1/2)∫ ((z^4 −1)/(z^3 (t+z)))dz  let decompose  F(z) =((z^4 −1)/(z^3 (z+t)))⇒F(z) =((z^4 −1)/(z^4 +tz^3 )) =((z^4 +tz^3 −tz^3 −1)/(z^4  +tz^3 )) =1−((tz^3  +1)/(z^4 +tz^3 ))  w(z)=((tz^(3 ) +1)/(z^3 (z+t))) =(a/z)+(b/z^2 )+(c/z^3 ) +(d/(z+t))  c =(1/t)  ,    d =((1−t^4 )/(−t^3 )) =((t^4 −1)/t^3 ) ⇒w(z) =(a/z)+(b/z^2 ) +(1/(tz^3 )) +((t^4 −1)/(t^3 (z+t)))  lim_(z→+∞)  zw(z) =t =a +d ⇒a =t−d =t−((t^4 −1)/t^3 ) =(1/t^3 ) ⇒  w(z) =(1/(t^3 z)) +(b/z^2 ) +(1/(tz^3 )) +((t^4 −1)/(t^3 (z+t)))  w(1) =1  =(1/t^3 ) +b +(1/t) +((t^4 −1)/(t+1)) =(1/t^3 )+(1/t) +((t^4 −1)/(t+1))  =((t+t^3 )/t^4 ) +((t^4 −1)/(t+1)) =(((t+t^3 )(t+1)+t^8 −t^4 )/(t^4 (t+1)))  =((t^2  +t+t^4 +t^3 +t^8 −t^4 )/(t^4 (t+1))) =((t^8 +t^3 +t^2  +t)/(t^4 (t+1))) =((t^7  +t^2  +t+1)/(t^3 (t+1))) ⇒  b=1−((t^7  +t^2  +t+1)/(t^3 (t+1))) we have F(z)=1−(a/z)−(b/z^2 )−(c/z^3 )−(d/(z+t)) ⇒  ∫ F(z)dz =z−aln∣z∣+(b/z) +(c/(2z^2 )) −d ln∣z+t∣ +C...be continued...
1)letf(t)=ln(t+x+x+1)dxwehavef(t)1t+x+x+1dx=x=u2udut+u+u2+1=u=sh(α)2sh(α)ch(α)dαt+sh(α)+ch(α)=sh(2α)t+shα+chαdα=e2αeα2t+eαdα=eα=z12z2z2t+zdzz=12z2z2z(t+z)dz=12z41z3(t+z)dzletdecomposeF(z)=z41z3(z+t)F(z)=z41z4+tz3=z4+tz3tz31z4+tz3=1tz3+1z4+tz3w(z)=tz3+1z3(z+t)=az+bz2+cz3+dz+tc=1t,d=1t4t3=t41t3w(z)=az+bz2+1tz3+t41t3(z+t)limz+zw(z)=t=a+da=td=tt41t3=1t3w(z)=1t3z+bz2+1tz3+t41t3(z+t)w(1)=1=1t3+b+1t+t41t+1=1t3+1t+t41t+1=t+t3t4+t41t+1=(t+t3)(t+1)+t8t4t4(t+1)=t2+t+t4+t3+t8t4t4(t+1)=t8+t3+t2+tt4(t+1)=t7+t2+t+1t3(t+1)b=1t7+t2+t+1t3(t+1)wehaveF(z)=1azbz2cz3dz+tF(z)dz=zalnz+bz+c2z2dlnz+t+Cbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *