1-find-ln-x-x-1-dx-2-calculate-0-1-ln-x-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 85162 by mathmax by abdo last updated on 19/Mar/20 1)find∫ln(x+x+1)dx2)calculate∫01ln(x+x+1)dx Commented by mathmax by abdo last updated on 01/Apr/20 1)letf(t)=∫ln(t+x+x+1)dxwehavef′(t)∫1t+x+x+1dx=x=u∫2udut+u+u2+1=u=sh(α)2∫sh(α)ch(α)dαt+sh(α)+ch(α)=∫sh(2α)t+shα+chαdα=∫e2α−e−α2t+eαdα=eα=z12∫z2−z−2t+zdzz=12∫z2−z−2z(t+z)dz=12∫z4−1z3(t+z)dzletdecomposeF(z)=z4−1z3(z+t)⇒F(z)=z4−1z4+tz3=z4+tz3−tz3−1z4+tz3=1−tz3+1z4+tz3w(z)=tz3+1z3(z+t)=az+bz2+cz3+dz+tc=1t,d=1−t4−t3=t4−1t3⇒w(z)=az+bz2+1tz3+t4−1t3(z+t)limz→+∞zw(z)=t=a+d⇒a=t−d=t−t4−1t3=1t3⇒w(z)=1t3z+bz2+1tz3+t4−1t3(z+t)w(1)=1=1t3+b+1t+t4−1t+1=1t3+1t+t4−1t+1=t+t3t4+t4−1t+1=(t+t3)(t+1)+t8−t4t4(t+1)=t2+t+t4+t3+t8−t4t4(t+1)=t8+t3+t2+tt4(t+1)=t7+t2+t+1t3(t+1)⇒b=1−t7+t2+t+1t3(t+1)wehaveF(z)=1−az−bz2−cz3−dz+t⇒∫F(z)dz=z−aln∣z∣+bz+c2z2−dln∣z+t∣+C…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-arctan-1-n-2-n-Next Next post: Question-150697 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.