Menu Close

1-find-n-1-cos-nx-n-and-n-1-sin-nx-n-2-calculate-n-1-1-n-cos-2npi-3-and-n-1-1-n-sin-2npi-3-




Question Number 45968 by maxmathsup by imad last updated on 19/Oct/18
1)find Σ_(n=1) ^∞   ((cos(nx))/n) and Σ_(n=1) ^∞  ((sin(nx))/n)  2) calculate Σ_(n=1) ^∞  (1/n)cos(((2nπ)/3)) and Σ_(n=1) ^∞  (1/n)sin(((2nπ)/3))
1)findn=1cos(nx)nandn=1sin(nx)n2)calculaten=11ncos(2nπ3)andn=11nsin(2nπ3)
Commented by maxmathsup by imad last updated on 23/Oct/18
1) let f(x)=Σ_(n=1) ^∞  ((cos(nx))/n) and g(x)=Σ_(n=1) ^∞  ((sin(nx))/n) we have  f(x)+ig(x)=Σ_(n=1) ^∞  (e^(inx) /n) =Σ_(n=1) ^∞  (((e^(ix) )^n )/n) =−ln(1−e^(ix) )  =−ln(1−cosx −isinx)=−ln(2 sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =−ln(−i sin((x/2))( e^(i(x/2)) ))=−ln(−i) +ln(sin((x/2)))−i(x/2)  =−ln(e^(−i(π/2)) )−i(x/2) +ln(sin((x/2)))=((iπ)/2)−i(x/2) +ln(sin((x/2)))  =i((π−x)/2) +ln(sin((x/2))) ⇒Σ_(n=1) ^∞ ((cos(nx))/n) =ln(sin((x/2))) and  Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) .
1)letf(x)=n=1cos(nx)nandg(x)=n=1sin(nx)nwehavef(x)+ig(x)=n=1einxn=n=1(eix)nn=ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(isin(x2)(eix2))=ln(i)+ln(sin(x2))ix2=ln(eiπ2)ix2+ln(sin(x2))=iπ2ix2+ln(sin(x2))=iπx2+ln(sin(x2))n=1cos(nx)n=ln(sin(x2))andn=1sin(nx)n=πx2.
Commented by maxmathsup by imad last updated on 23/Oct/18
2)we have proved that Σ_(n=1) ^∞  ((cos(nx))/n)=ln(sin((x/2)) for x=((2π)/3) ⇒  Σ_(n=1) ^∞  ((cos(((2nπ)/3)))/n) =ln(sin((π/3)))=ln(((√3)/2))=(1/2)ln(3)−ln(2) also we have  Σ_(n=1) ^∞   ((sin(nx))/n) =((π−x)/2) ⇒Σ_(n=1) ^∞  ((sin(((2nπ)/3)))/n) =((π−((2π)/3))/2) =(π/2)−(π/3) =(π/6) .
2)wehaveprovedthatn=1cos(nx)n=ln(sin(x2)forx=2π3n=1cos(2nπ3)n=ln(sin(π3))=ln(32)=12ln(3)ln(2)alsowehaven=1sin(nx)n=πx2n=1sin(2nπ3)n=π2π32=π2π3=π6.
Answered by Smail last updated on 22/Oct/18
p(x)=Σ_(n=1) ^∞ (e^(inx) /n)  ln(1−x)=−Σ_(n=1) ^∞ (x^n /n)  with ∣x∣<1  So  p(x)=−(−Σ_(n=1) ^∞ (((e^(ix) )^n )/n))=−ln(1−e^(ix) )  p(x)=a+ib=−ln(1−e^(ix) )  Σ_(n=1) ^∞ (e^(inx) /n)=Σ_(n=1) ^∞ ((cos(nx))/n)+iΣ_(n=1) ^∞ ((sin(nx))/n)  e^(a+ib) =(1/(1−cos(x)−isin(x)))  e^a cos(b)+ie^a sin(b)=((1−cos(x)+isin(x))/(2(1−cos(x))))  e^a cos(b)=(1/2) and e^a sin(b)=((sin(x))/(2(1−cos(x))))  tan(b)=((sin(x))/(1−cos(x)))  b=tan^(−1) (((sin(x))/(1−cos(x))))  which is b=Σ_(n=1) ^∞ ((sin(nx))/n)=tan^(−1) (((sinx)/(1−cosx)))  and  e^a cos(b)=(1/2)  e^a =(1/(2cos(b)))=(1/2)(√(1+tan^2 (b)))  e^a =(1/2)(√(1+((sin^2 x)/((1−cosx)^2 ))))=(1/2)(√((2(1−cos(x)))/((1−cosx)^2 )))  =((√2)/2)(√(1/(1−cosx))) So  a=ln((1/( (√2))))+ln((1/( (√(1−cosx)))))  a=Σ_(n=1) ^∞ ((cos(nx))/n)=−(1/2)(ln(2)+ln(1−cosx))
p(x)=n=1einxnln(1x)=n=1xnnwithx∣<1Sop(x)=(n=1(eix)nn)=ln(1eix)p(x)=a+ib=ln(1eix)n=1einxn=n=1cos(nx)n+in=1sin(nx)nea+ib=11cos(x)isin(x)eacos(b)+ieasin(b)=1cos(x)+isin(x)2(1cos(x))eacos(b)=12andeasin(b)=sin(x)2(1cos(x))tan(b)=sin(x)1cos(x)b=tan1(sin(x)1cos(x))whichisb=n=1sin(nx)n=tan1(sinx1cosx)andeacos(b)=12ea=12cos(b)=121+tan2(b)ea=121+sin2x(1cosx)2=122(1cos(x))(1cosx)2=2211cosxSoa=ln(12)+ln(11cosx)a=n=1cos(nx)n=12(ln(2)+ln(1cosx))
Commented by Smail last updated on 22/Oct/18
a(x)=−(1/2)(ln(2)+ln(1−cosx))  a(((2π)/3))=Σ_(n=1) ^∞ ((cos(2nπ/3))/n)=−(1/2)(ln(2)+ln(1−cos(2π/3)))  =−(1/2)(ln(2)+ln(1+(1/2)))=−((ln3)/2)  b(x)=tan^(−1) (((sinx)/(1−cosx)))  b(2π/3)=tan^(−1) (((sin(2π/3))/(1−cos(2π/3))))  =tan^(−1) (((√3)/3))=(π/6)+kπ  so Σ_(n=1) ^∞ ((sin(2nπ/3))/n)=(π/6)
a(x)=12(ln(2)+ln(1cosx))a(2π3)=n=1cos(2nπ/3)n=12(ln(2)+ln(1cos(2π/3)))=12(ln(2)+ln(1+12))=ln32b(x)=tan1(sinx1cosx)b(2π/3)=tan1(sin(2π/3)1cos(2π/3))=tan1(33)=π6+kπson=1sin(2nπ/3)n=π6

Leave a Reply

Your email address will not be published. Required fields are marked *