Menu Close

1-find-n-1-e-inx-n-n-1-2-find-the-value-of-n-1-sin-nx-n-n-1-and-n-1-cos-nx-n-n-1-




Question Number 33131 by prof Abdo imad last updated on 11/Apr/18
1)find  Σ_(n=1) ^∞   (e^(inx) /(n(n+1)))  2) find the value of   Σ_(n≥1)  ((sin(nx))/(n(n+1)))  and Σ_(n≥1)   ((cos(nx))/(n(n+1))) .
1)findn=1einxn(n+1)2)findthevalueofn1sin(nx)n(n+1)andn1cos(nx)n(n+1).
Commented by prof Abdo imad last updated on 12/Apr/18
let find S(x) = Σ_(n=1) ^∞   (x^n /(n(n+1)))  the radius of   convergrnce is 1 and  for x=+^− 1 the serie is  also convergent we have for  ∣x∣<1  S(x)= Σ_(n=1) ^∞   ((1/n) −(1/(n+1)))x^n  =Σ_(n=1) ^∞  (x^n /n) −Σ_(n=1) ^∞   (x^n /(n+1))  but  Σ_(n=1) ^∞   (x^n /n) =−ln(1−x)  Σ_(n=1) ^∞    (x^n /(n+1)) = Σ_(n=2) ^∞   (x^(n−1) /n) = (1/x) Σ_(n=2) ^∞   (x^n /n)  =(1/x)( −ln(1−x) −x)  =−(1/x)ln(1−x) −1 ⇒  S(x)= −ln(1−x) +(1/x)ln(1−x) +1  =(−1 +(1/x))ln(1−x) +1 ⇒  S(x) = ((1−x)/x) ln(1−x) +1  let change x per e^(ix)   we get  Σ_(n=1) ^∞     (e^(inx) /(n(n+1)))  = ((1−e^(ix) )/e^(ix) ) ln(1−e^(ix) ) +1  =( e^(−ix)  −1)ln(1−e^(ix) ) +1  2) Σ_(n=1) ^∞   ((sin(nx))/(n(n+1)))  =Im(S(e^(ix) ))  let find it  (e^(−ix)  −1) = cosx −i sinx −1    = −2sin^2 ((x/2)) −2i sin((x/2))cos((x/2))  = −2i sin((x/2))( cos((x/2)) −i sin((x/2)))  =−2i e^(−i(x/2))   ln(1−e^(ix) ) = ln (1−cosx −isinx)  = ln( 2sin^2 ((x/2)) −2i sin((x/2))cos((x/2)))  =ln(−2i sin((x/2))(cos((x/2)) +isin((x/2)))  = ln(−i) +ln(2sin((x/2)) +ln(e^(i(x/2)) )  =−i (π/2) +ln(2sin((x/2))) +((ix)/2)  =ln(2sin((x/2))) +i((x−π)/2)  Im( S(e^(ix) )) = −2i e^(−i(x/2)) (  ln(2sin((x/2)) +i((x−π)/2))  =−2i( cos((x/2)) −isin((x/2)))(ln(2sin((x/2)) +i((x−π)/2))  = −2i ) ( cos((x/2))ln(2sin((x/2)) +i((x−π)/2) cos((x/2))  −i sin((x/2))ln(2sin((x/2)) +((x−π)/2) sin((x/2)))  = −2i cos((x/2))ln(2sin((x/2)) +(x−π)cos((x/2))  −2 sin((x/2))ln(2sin((x/2)) +i(π−x) sin((x/2)) ⇒  Σ_(n=1) ^∞  ((sin(nx))/(n(n+1)))  =(π−x)sin((x/2)) −sin((x/2))ln(2sin((x/2)))  Σ_(n=1) ^∞   ((cos(nx))/(n(n+1))) =(x−π)cos((x/2)) −2sin((x/2))ln(2sin((x/2))) +1.
letfindS(x)=n=1xnn(n+1)theradiusofconvergrnceis1andforx=+1theserieisalsoconvergentwehaveforx∣<1S(x)=n=1(1n1n+1)xn=n=1xnnn=1xnn+1butn=1xnn=ln(1x)n=1xnn+1=n=2xn1n=1xn=2xnn=1x(ln(1x)x)=1xln(1x)1S(x)=ln(1x)+1xln(1x)+1=(1+1x)ln(1x)+1S(x)=1xxln(1x)+1letchangexpereixwegetn=1einxn(n+1)=1eixeixln(1eix)+1=(eix1)ln(1eix)+12)n=1sin(nx)n(n+1)=Im(S(eix))letfindit(eix1)=cosxisinx1=2sin2(x2)2isin(x2)cos(x2)=2isin(x2)(cos(x2)isin(x2))=2ieix2ln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2isin(x2)(cos(x2)+isin(x2))=ln(i)+ln(2sin(x2)+ln(eix2)=iπ2+ln(2sin(x2))+ix2=ln(2sin(x2))+ixπ2Im(S(eix))=2ieix2(ln(2sin(x2)+ixπ2)=2i(cos(x2)isin(x2))(ln(2sin(x2)+ixπ2)=2i)(cos(x2)ln(2sin(x2)+ixπ2cos(x2)isin(x2)ln(2sin(x2)+xπ2sin(x2))=2icos(x2)ln(2sin(x2)+(xπ)cos(x2)2sin(x2)ln(2sin(x2)+i(πx)sin(x2)n=1sin(nx)n(n+1)=(πx)sin(x2)sin(x2)ln(2sin(x2))n=1cos(nx)n(n+1)=(xπ)cos(x2)2sin(x2)ln(2sin(x2))+1.

Leave a Reply

Your email address will not be published. Required fields are marked *