Menu Close

1-find-S-x-n-1-cos-nx-n-2-find-n-1-1-n-n-




Question Number 38109 by maxmathsup by imad last updated on 21/Jun/18
1) find  S(x) = Σ_(n=1) ^∞   ((cos(nx))/n)  2) find  Σ_(n=1) ^∞   (((−1)^n )/n)
1)findS(x)=n=1cos(nx)n2)findn=1(1)nn
Commented by abdo.msup.com last updated on 30/Jun/18
we have S(x)=Re(Σ_(n=1) ^∞  (e^(inx) /n))=Re(w(x))  w(x)=Σ_(n=1) ^∞  (e^(inx) /n) ⇒w^′ (x)=i Σ_(n=1) ^∞  (e^(ix) )^n   =i e^(ix)  Σ_(n=1) ^∞  (e^(ix) )^(n−1) =ie^(ix) Σ_(n=0) ^∞  (e^(ix) )^n   =i(e^(ix) /(1−e^(ix) )) =i (e^(ix) /(1−cosx −isinx))  =i (e^(ix) /(2sin^2 ((x/2))−2isin((x/2))cos((x/2))))  = (i/(−2isin((x/2)))) (e^(ix) /e^(i(x/2)) )  =((−1)/(2 sin((x/2)))) e^(i(x/2))   = ((−1)/(2sin((x/2)))){ cos((x/2)) +i sin((x/2))}  =−(1/2)cotan((x/2)) −(i/2) ⇒  w(x)=−(1/2) ∫  ((cos((x/2)))/(sin((x/2)))) −((ix)/2) +c  =−ln∣sin((x/2))∣ −((ix)/2) +c   w(π) =−((iπ)/2) +c =Σ_(n=1) ^∞   (((−1)^n )/n) =−ln(2)  ⇒c=((iπ)/2) −ln(2) ⇒  w(x)=−ln∣ sin((x/2))∣−((ix)/2) +((iπ)/2) −ln(2)  S(x)=Re(w(x))=−ln∣sin((x/2))∣−ln(2).  also we get Σ_(n=1) ^∞  ((sin(nx))/n) =((π−x)/2) .
wehaveS(x)=Re(n=1einxn)=Re(w(x))w(x)=n=1einxnw(x)=in=1(eix)n=ieixn=1(eix)n1=ieixn=0(eix)n=ieix1eix=ieix1cosxisinx=ieix2sin2(x2)2isin(x2)cos(x2)=i2isin(x2)eixeix2=12sin(x2)eix2=12sin(x2){cos(x2)+isin(x2)}=12cotan(x2)i2w(x)=12cos(x2)sin(x2)ix2+c=lnsin(x2)ix2+cw(π)=iπ2+c=n=1(1)nn=ln(2)c=iπ2ln(2)w(x)=lnsin(x2)ix2+iπ2ln(2)S(x)=Re(w(x))=lnsin(x2)ln(2).alsowegetn=1sin(nx)n=πx2.
Commented by abdo.msup.com last updated on 30/Jun/18
2) we have provef that  Σ_(n=1) ^∞  (((−1)^(n−1) )/n) x^n  =ln(1+x) if ∣x∣≤1 and  x≠−1 ⇒Σ_(n=1) ^∞  (((−1)^(n−1) )/n) =ln(2) ⇒  Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2).
2)wehaveprovefthatn=1(1)n1nxn=ln(1+x)ifx∣⩽1andx1n=1(1)n1n=ln(2)n=1(1)nn=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *