Menu Close

1-find-the-locus-z-z-1-2-meets-the-positive-real-axis-2-On-a-single-Argand-diagram-sketch-the-loci-z-z-1-2-arg-z-z-2-pi-4-




Question Number 112454 by bemath last updated on 08/Sep/20
(1) find the locus ∣z−z_1 ∣ = 2 meets  the positive real axis  (2)On a single Argand diagram, sketch  the loci → { ((∣z−z_1 ∣=2)),((arg(z−z_2 )=(π/4))) :}
(1)findthelocuszz1=2meetsthepositiverealaxis(2)OnasingleArganddiagram,sketchtheloci{zz1∣=2arg(zz2)=π4
Commented by MJS_new last updated on 08/Sep/20
(2) we cannot scetch the loci if we don′t know  any coordinates.  ∣z−z_1 ∣=2 is the equations of all circles with  radius 2  arg (z−z_2 ) =(π/4) is any straight line with slope 45°  let z−z_2 =re^(iθ)  ⇒ arg re^(iθ)  =θ ⇒ θ=(π/4)  arg ((x−p)+(y−q)i) =(π/4)  leads to y=x−p+q
(2)wecannotscetchthelociifwedontknowanycoordinates.zz1∣=2istheequationsofallcircleswithradius2arg(zz2)=π4isanystraightlinewithslope45°letzz2=reiθargreiθ=θθ=π4arg((xp)+(yq)i)=π4leadstoy=xp+q
Answered by MJS_new last updated on 08/Sep/20
(1)  assuming z_1  is given and z is variable we have  z_1 =p+qi ∧ z=x+yi  ∣z−z_1 ∣=2  ∣(x−p)+(y−q)i∣=2  (√((x−p)^2 +(y−q)^2 ))=2  both sides are ≥0 ⇒ we are allowed to square  (x−p)^2 +(y−q)^2 =4  which is a circle with center  ((p),(q) )  and radius 4  if it meets the positive real axis depends on  the values if p and q  −2≤q≤2 ⇒ it meets the real axis  p>2 ⇒ it meets the positive real axis  we find the intersection point(s) putting  y=0  (x−p)^2 +q^2 =4  ⇒ x=p±(√(4−q^2 )) with p>2∧−2≤q≤2
(1)assumingz1isgivenandzisvariablewehavez1=p+qiz=x+yizz1∣=2(xp)+(yq)i∣=2(xp)2+(yq)2=2bothsidesare0weareallowedtosquare(xp)2+(yq)2=4whichisacirclewithcenter(pq)andradius4ifitmeetsthepositiverealaxisdependsonthevaluesifpandq2q2itmeetstherealaxisp>2itmeetsthepositiverealaxiswefindtheintersectionpoint(s)puttingy=0(xp)2+q2=4x=p±4q2withp>22q2
Commented by bemath last updated on 08/Sep/20
thank you sir
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *