Menu Close

1-find-the-radius-of-convergence-for-n-1-x-n-n-n-1-n-2-and-calculate-its-sum-2-find-the-value-of-n-1-1-n-n-2-n-n-1-n-2-




Question Number 33710 by math khazana by abdo last updated on 22/Apr/18
1) find the radius of convergence?for  Σ_(n=1) ^∞    (x^n /(n(n+1)(n+2))) and calculate its sum    2) find the value of Σ_(n=1) ^∞    (((−1)^n )/(n 2^n (n+1)(n+2)))
1)findtheradiusofconvergence?forn=1xnn(n+1)(n+2)andcalculateitssum2)findthevalueofn=1(1)nn2n(n+1)(n+2)
Commented by prof Abdo imad last updated on 27/Apr/18
let put u_n =(1/(n(n+1)(n+2)))  we have  (u_(n+1) /u_n ) = ((n(n+1)(n+2))/((n+1)(n+2)(n+3))) ⇒lim_(n→+∞) (u_(n+1) /u_n ) =1  ⇒ R =1  let decompose F(x)=(1/(x(x+1)(x+2)))  F(x)= (a/x) +(b/(x+1))+(c/(x+2))  a=lim_(x→0) xF(x)=(1/2)  b=lim_(x→−1) (x+1)F(x)= (1/(−1)) =−1  c=lim_(x→−2) (x+2)F(x)= (1/((−2)(−1))) =(1/2)  ⇒ F(x)= (1/(2x)) −(1/(x+1)) + (1/(2(x+2)))  S(x) =Σ_(n=1) ^∞ ((1/(2n)) −(1/(n+1)) +(1/(2(n+2))))x^n   =(1/2) Σ_(n=1) ^∞   (x^n /n) −Σ_(n=1) ^∞  (x^n /(n+1)) +(1/2) Σ_(n=1) ^∞  (x^n /(n+2)) but  Σ_(n=1) ^∞  (x^n /n) =−ln∣1−x∣  Σ_(n=1) ^∞    (x^n /(n+1)) =Σ_(n=2) ^(+∞)   (x^(n−1) /n) = (1/x)( Σ_(n=2) ^(+∞)   (x^n /n))  =(1/x)(−ln∣1−x∣−x)  Σ_(n=1) ^∞   (x^n /(n+2)) = Σ_(n=3) ^(+∞)    (x^(n−2) /n) =(1/x^2 ) Σ_(n=3) ^(+∞)  (x^n /n)  =(1/x^2 )( Σ_(n=1) ^∞  (x^n /n) −x  −(x^2 /2))  = −((ln∣1−x∣)/x^2 ) −(1/x) −(1/2) ⇒  S(x)=−(1/2)ln∣1−x∣ −(1/x)(−ln∣1−x∣ −x)  −((ln∣1−x∣)/(2x^2 )) −(1/(2x)) −(1/4)  S(x)=(−(1/2) +(1/x) −(1/(2x^2 )))ln∣1−x∣ +1−(1/(2x)) −(1/4)  S(x)=(−(1/2)+(1/x) −(1/(2x^2 )))ln∣1−x∣ −(1/(2x)) +(3/4) .  2) Σ_(n=1) ^∞     (((−1)^n )/(2^n n(n+1)(n+2))) = S(−(1/2))  =(−(1/2) −2 −2)ln((3/2))  +1 +(3/4)  =(−(1/2)−4)ln((3/2)) +(7/4)  = (7/4) −(9/2) (ln(3) −ln(2)) .
letputun=1n(n+1)(n+2)wehaveun+1un=n(n+1)(n+2)(n+1)(n+2)(n+3)limn+un+1un=1R=1letdecomposeF(x)=1x(x+1)(x+2)F(x)=ax+bx+1+cx+2a=limx0xF(x)=12b=limx1(x+1)F(x)=11=1c=limx2(x+2)F(x)=1(2)(1)=12F(x)=12x1x+1+12(x+2)S(x)=n=1(12n1n+1+12(n+2))xn=12n=1xnnn=1xnn+1+12n=1xnn+2butn=1xnn=ln1xn=1xnn+1=n=2+xn1n=1x(n=2+xnn)=1x(ln1xx)n=1xnn+2=n=3+xn2n=1x2n=3+xnn=1x2(n=1xnnxx22)=ln1xx21x12S(x)=12ln1x1x(ln1xx)ln1x2x212x14S(x)=(12+1x12x2)ln1x+112x14S(x)=(12+1x12x2)ln1x12x+34.2)n=1(1)n2nn(n+1)(n+2)=S(12)=(1222)ln(32)+1+34=(124)ln(32)+74=7492(ln(3)ln(2)).

Leave a Reply

Your email address will not be published. Required fields are marked *